Beechcraft

SIERRA 200

B24*R*

(Serials MC-152 thru MC-451, except MC-449)

PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL

FAA APPROVED IN NORMAL CATEGORY BASED ON CAR 3. THIS DOCUMENT MUST BE CARRIED IN THE AIR-PLANE AT ALL TIMES AND BE KEPT WITHIN REACH OF THE PILOT DURING ALL FLIGHT OPERATIONS.

THIS HANDBOOK INCLUDES THE MATERIAL REQUIRED TO BE FURNISHED TO THE PILOT BY CAR 3.

Mfr's Serial No

Registration N

FAA Approved

THIS HANDBOOK SUPERSEDES ALL BEECH PUBLISHED OWNERS MANUALS AND CHECK LISTS ISSUED FOR THIS AIRPLANE WITH THE EXCEPTION OF FAA AP-PROVED AIRPLANE FLIGHT MANUALS.

COPYRIGHT ® BEECH 1990

P/N 169-590023-15 Issued: February, 1980 P/N 169-590023-15A2 Revised: October, 1990

www.carburetor-manual.com

Would you like some Free Manuals?

http://carburetor-manual.com/free-shop-manual-club-t-13.html

Also visit http://freeshopmanual.com for more Free Manuals

Also Visit my website for 7 FREE Download Manuals starting with this one.

"The ABC's of Carburetion"

<u>Click Here Now</u>

PUBLISHED BY COMMERCIAL PUBLICATIONS BEECH AIRCRAFT CORPORATION WICHITA, KANSAS 67201 U. S. A.

Member of GAMA General Aviation Manufacturers Association

SIERRA 200 B24R (MC-152 THRU MC-451, EXCEPT MC-449)

PILOT'S OPERATING HANDBOOK AND

FAA APPROVED AIRPLANE FLIGHT MANUAL

A2 RevisionOctober, 1990

LOG OF REVISIONS

Page	Description
Title Page	Updated
Page A (A2)	New
10-1 thru 10-48	Revised Section X, Safety Information (October, 1990)
	A2

SIERRA 200 B24R Pilot's Operating Handbook and FAA Approved Airplane Flight Manual

LOG OF REVISIONS

A1 October 1984

 PAGES
 DESCRIPTION

 Title Page
 Update Title Page

Title Page Logo Page Page A (A1) a and b 1-1 1-4 1-5 & 1-6 1-7 1-8 4-9 4-10 4-11	Update Title Page Added Update Revise "Introduction" Update "Table of Contents" Revise "Important Notice" Revise "NOTE" and Shift Mater Shifted Material Revise "Airplane Flight Manual Supplements Revision Record" and Shift Material Revise "Before Takeoff" and "T Revise "Cruise" Revise "Before Landing"	ial akeoff''
7-23	Revise "Fuel Boost Pump"	
		A1

SIERRA 200 B24R Pilot's Operating Handbook and FAA Approved Airplane Flight Manual

LOG OF REVISIONS

PAGES	DESCRIPTION
Title Page "A" Page a and b 1-1 thru 1-20 2-1 thru 2-28 3-1 thru 3-12 4-1 thru 4-14 5-1 thru 5-24 6-1 thru 6-20 7-1 thru 7-32 8-1 thru 8-46 Section 9 10-1 thru 10-30	See Log of Supplements
	10-1 Thru 10-67 Revised Safety Section Dated March 1981.
	A

Page A

B24R Pilot's Operating Handbook and FAA Approved Airplane Flight Manual

INTRODUCTION

This Pilot's Operating Handbook and FAA Approved Airplane Flight Manual is in the format and contains data recommended in the GAMA (General Aviation Manufacturers Association) Handbook Specification Number 1. Use of this specification by all manufacturers will provide the pilot the same type data in the same place in all of the handbooks.

In recent years BEECHCRAFT handbooks contained most of the data now provided, however, the new handbooks contain more detailed data and some entirely new data.

For example, attention is called to Section X SAFETY IN-FORMATION. While little of the information is new and every pilot has been exposed to the basic fundamentals, BEECHCRAFT feels it is highly important to have SAFETY INFORMATION in a condensed form in the hands of the pilots. The SAFETY INFORMATION should be read and studied. Periodic review will serve as a reminder of good piloting techniques.

WARNING

Use only genuine BEECHCRAFT or BEECHCRAFT approved parts obtained from BEECHCRAFT approved sources, in connection with the maintenance and repair of Beech airplanes.

Genuine BEECHCRAFT parts are produced and inspected under rigorous procedures to ensure airworthiness and suitability for use in Beech airplane applications. Parts purchased from sources other than BEECHCRAFT, even though outwardly identical in appearance, may not have

Revised: October, 1984

B24R Pilot's Operating Handbook and FAA Approved Airplane Flight Manual

had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in an airplane.

Salvaged airplane parts, reworked parts obtained from non-BEECHCRAFT approved sources, or parts, components, or structural assemblies, the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures or have other hidden damage, not discernible through routine visual or usual nondestructive testing techniques. This may render the part, component or structural assembly, even though originally manufactured by BEECHCRAFT, unsuitable and unsafe for airplane use.

BEECHCRAFT expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-BEECHCRAFT approved parts.

TABLE OF DIVISIONS

_
(

Revised: October, 1984

SECTION I

GENERAL

TABLE OF CONTENTS

SUBJECT

PAGE

Imp	portant Notice	1-3
Use	e of the Handbook	1-4
Rev	vising the Handbook	1-7
Air	plane Flight Manual Supplements	
Re	evision Record	1-8
Ver	ndor-Issued STC Supplements	1-8
Air	plane Three View	1-9
Gro	ound Turning Clearance	1-10
Des	scriptive Data	
	Engine	1-11
	Propeller	1-11
	Fuel	1-11
1	Oil Capacity	1-12
	Approved Oil Types	1-12
	Maximum Certificated Weights	1-13
	Cabin and Entry Dimensions	1-13
	Baggage Space and Entry Dimensions	1-13
	Specific Loadings	1-13
Syr	nbols, Abbreviations and Terminology	1-14
	General Airspeed	1-14
	Meteorological	1-16
	Power	1-17
)	Engine Controls and Instruments	1-17
	Airplane Performance and Flight Planning	1-18
	Weight and Balance	1-19

BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

February 1980

1-2

THANK YOU . . . for displaying confidence in us by selecting a BEECHCRAFT airplane. Our design engineers, assemblers and inspectors have utilized their skills and years of experience to ensure that the BEECHCRAFT meets the high standards of quality and performance for which BEECHCRAFT airplanes have become famous throughout the world.

IMPORTANT NOTICE

This handbook must be read carefully by the owner and operator in order to become familiar with the operation of the airplane. Suggestions and recommendations have been made within it to aid in obtaining maximum performance without sacrificing economy. Be familiar with, and operate the airplane in accordance with the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual, and/or placards which are located in the airplane.

As a further reminder, the owner and operator of this airplane should also be familiar with the Federal Aviation Regulations applicable to the operation and maintenance of the airplane and FAR Part 91 General Operating and Flight Rules. Further, the airplane must be operated and maintained in accordance with FAA Airworthiness Directives which may be issued against it.

The Federal Aviation Regulations place the responsibility for the maintenance of this airplane on the owner and the operator who should ensure that all maintenance is done by qualified mechanics in conformity with all airworthiness requirements established for this airplane.

All limits, procedures, safety practices, time limits, servicing, and maintenance requirements contained in

BEECHCRAFT Sierra 200 B24R

this handbook are considered mandatory for the continued airworthiness of this airplane, in a condition equal to that of its original manufacture.

Authorized BEECHCRAFT Aero or Aviation Centers or International Distributors or Dealers can provide recommended modification, service, and operating procedures issued by both FAA and Beech Aircraft Corporation, which are designed to get maximum utility and safety from this airplane.

USE OF THE HANDBOOK

The Pilot's Operating Handbook is designed so that necessary documents may be maintained for the safe and efficient operation of the airplane. The handbook has been prepared in loose leaf form for ease in maintenance and in a convenient size for storage. The handbook has been arranged with quick reference tabs imprinted with the title of each section and contains ten basic divisions:

Section I	General	-
Section II	Limitations	
Section III	Emergency Procedures	
Section IV	Normal Procedures	
Section V	Performance	
Section VI	Weight and Balance/Equipment List	_
Section VII	Systems Description	
Section VIII	Handling, Servicing and Maintenance	
Section IX	Supplements	
Section X	Safety Information	

NOTE

Except as noted, all airspeeds quoted in this handbook are Indicated Airspeeds (IAS) and assume zero instrument error.

In an effort to provide as complete coverage as possible, applicable to any configuration of the airplane, some optional equipment has been included in the scope of the handbook. However, due to the variety of airplane appointments and arrangements available, optional equipment described and depicted herein may not be designated as such in every case.

The following information may be provided to the holder of this manual automatically:

- 1. Original issues and revisions of BEECH-CRAFT Service Bulletins
- Original issues and revisions of FAA Approved Airplane Flight Manual Supplements
- Reissues and revisions of FAA Approved Airplane Flight Manuals, Flight Handbooks, Owner's Manuals, Pilot's Operating Manuals, and Pilot's Operating Handbooks

This service is free and will be provided only to holders of this handbook who are listed on the FAA Aircraft Registration Branch List or the BEECHCRAFT International Owners Notification Service List, and then only if listed by airplane serial number for the model for which this handbook is applicable. For detailed information on how to obtain "Revision Service" applicable to this handbook or other BEECH-

CRAFT Service Publications, consult a BEECH-CRAFT Aero or Aviation Center, International Distributor or Dealer, or refer to the latest revision of BEECHCRAFT Service Bulletin No. 2001.

BEECH AIRCRAFT CORPORATION EXPRESSLY RESERVES THE RIGHT TO SUPERSEDE, CAN-CEL, AND/OR DECLARE OBSOLETE, WITHOUT PRIOR NOTICE, ANY PART, PART NUMBER, KIT OR PUBLICATION REFERENCED IN THIS HAND-BOOK.

The owner/operator should always refer to all supplements, whether STC Supplements or Beech Supplements, for possible placards, limitations, normal, emergency and other operational procedures for proper operation of the airplane with optional equipment installed.

REVISING THE HANDBOOK

Immediately following the title page is the "Log of Revisions" page(s). The Log of Revisions pages are used for maintaining a listing of all effective pages in the handbook (except the SUPPLEMENTS section), and as a record of revisions to these pages. In the lower right corner of the outlined portion of the Log of Revisions is a box containing a capital letter which denotes the issue or reissue of the handbook. This letter may be suffixed by a number which indicates the numerical revision. When a revision to any information in the handbook is made, a new Log of Revisions will be issued. All Logs of Revisions must be retained in the handbook to provide a current record of material status until a reissue is made.

WARNING

When this handbook is used for airplane operational purposes, it is the pilot's responsibility to maintain it in current status.

BEECHCRAFT Sierra 200 B24R

AIRPLANE FLIGHT MANUAL SUPPLEMENTS REVISION RECORD

Section IX contains the FAA Approved Airplane Flight Manual Supplements headed by a Log of Supplements page. On the "Log" page is a listing of the FAA Approved Supplemental Equipment available for installation on the airplane. When new supplements are received or existing supplements are revised, a new "Log" page will replace the previous one, since it contains a listing of all previous approvals, plus the new approval. The supplemental material will be added to the grouping in accordance with the descriptive listing.

NOTE

Upon receipt of a new or revised supplement, compare the "Log" page just received with the existing "Log" page in the manual. Retain the "Log" page with the later date on the bottom of the page and discard the other log.

VENDOR-ISSUED STC SUPPLEMENTS

When a new airplane is delivered from the factory, the handbook delivered with it contains either an STC (Supplemental Type Certificate) Supplement or a Beech Flight Manual Supplement for every installed item requiring a supplement. If a new handbook for operation of the airplane is obtained at a later date, it is the responsibility of the owner/operator to ensure that all required STC Supplements (as well as weight and balance and other pertinent data) are transferred into the new handbook.

February 1980

BEECHCRAFT

Sierra 200 B24R

AIRPLANE THREE-VIEW

Section I

General

GROUND TURNING CLEARANCE

۵	Radius	for	Wing	Tip			 •			•		•		2	26	f	t. 1	0	in.
₿	Radius	for	Nose	Whee	el				•	• •					1	2	ft.	1	in.
Ô	Radius	for	Inside	Gear	-		 •	• •	•		 •					4	ft.	1	in.
0	Radius	for	Outsid	de Ge	a	r	•	• •	•			•	 •		1	6	ft.	9	in.

TURNING RADII ARE CALCULATED USING FULL STEER-ING, ONE BRAKE AND PARTIAL POWER.

DESCRIPTIVE DATA

ENGINE

One Avco Lycoming engine model IO-360-A1B6. It is a fuel-injected, direct-drive, air-cooled, horizontally-opposed, 4 cylinder, 200-hp-rated engine.

Take-off and maximum continuous operation (sea level): 2700 rpm, full throttle.

PROPELLER

Hartzell constant-speed, two-blade, aluminum-alloy propeller using HC-M2YR-IBF hub with F7666A-2R blades. Diameter is 74 inches. No cutoff permitted.

FUEL

Aviation Gasoline 100 (green), or 100LL (blue) minimum grade.

*59.8-gallon system

(29.9 gallons each tank) *52.2 gallons usable

Each tank has provisions for partial filling to:

20 gallons each tank 32.2 gallons usable 15 gallons each tank 22.2 gallons usable

*Value given is nominal. Tank capacity will vary with temperature and manufacturing tolerances.

OIL CAPACITY

The oil capacity is 8 quarts.

APPROVED OIL TYPES

Avco Lycoming Specification Number 301E approves for use lubricating oils which conform to both MIL-L-6082B straight mineral type and MIL-L-22851 ashless dispersant lubricants for airplane engines. Refer to the Approved Engine Oils table in the HANDLING, SERVICING AND MAINTENANCE section for a list of approved products.

Section I General

MAXIMUM CERTIFICATED WEIGHTS

	Maximum Ramp W	/eight		 		2758	lbs
	Maximum Take-Off	Weight		 		2750	lbs
	Maximum Landing	Weight		 		2750	lbs
)	Maximum Zero Fue	el Weigh	t.	 No	Structu	iral Li	mit
	Maximum Weight i	in					
	Baggage Comp	artment		 		270	bs.

CABIN AND ENTRY DIMENSIONS

Length (maximum)		•	•	•		•			•	•••	•	•		•	•		•	•				7	f	t 1	1	in	
Height (maximum)	÷		•	•	•	÷	•				•		•			÷							4	ft	0	in	
Width (maximum)					•				•				•				•					2	3	ft	8	in	
Cabin Door	÷			•						3	6		ir	۱.	1	N	/i	d	e	b	y	38	З	in.	h	igh	۱

BAGGAGE SPACE AND ENTRY DIMENSIONS

Compartment Volume		 •	•		• •		•	•		•		1	9	.5	Сι	ı f	t
Door Width (Minimum)				 •			•							2	22	in	۱.
Door Height (Minimum)) .		•			÷		•		÷	•		•	З	33	in	۱.

SPECIFIC LOADINGS (2750 lbs.)

Wing Loading			•		1			4			•				1	18.8	4	lb	s/sq	ft
Power Loading			•	 				•	•			•			 	13	.7	5	lbs/	np

BEECHCRAFT Sierra 200 B24R

SYMBOLS, ABBREVIATIONS AND TERMINOLOGY

The following Abbreviations and Terminologies have been listed for convenience and ready interpretation where used within this handbook. Whenever possible, they have been categorized for ready reference.

GENERAL AIRSPEED TERMINOLOGY

- CAS Calibrated Airspeed is the indicated speed of an airplane, corrected for position and instrument error. Calibrated airspeed is equal to true airspeed in standard atmosphere at sea level.
- GS Ground Speed is the speed of an airplane relative to the ground.
- IAS Indicated Airspeed is the speed of an airplane as shown on the airspeed indicator. IAS values published in this handbook assume zero instrument error.
- KCAS Calibrated Airspeed expressed in "knots".
- KIAS Indicated Airspeed expressed in "knots".
- TAS True Airspeed is the airspeed of an airplane relative to undisturbed air which is the CAS corrected for altitude, temperature, and compressibility.
- VA Maneuvering Speed is the maximum speed at which application of full available aerodynamic control will not overstress the airplane.

 \bigcirc

Section BEECHCRAFT General Sierra 200 B24R VFE Maximum Flap Extended Speed is the highest speed permissible with wing flaps in a prescribed extended position. VIF Maximum Landing Gear Extended Speed is the maximum speed at which an airplane can be safely flown with the landing gear extended VLO Maximum Landing Gear Operating Speed is the maximum speed at which the landing gear can be safely extended or retracted. VNE Never Exceed Speed is the speed limit that may not be exceeded at any time. VNO Maximum Structural Cruising Speed is the speed that should not be exceeded except or Vr in smooth air and then only with caution. ٧s Stalling Speed or the minimum steady flight speed at which the airplane is controllable. Vso Stalling Speed or the minimum steady flight speed at which the airplane is controllable in the landing configuration. ٧x Best Angle-of-Climb Speed is the airspeed which delivers the greatest gain of altitude in the shortest possible horizontal distance. VY Best Rate-of-Climb Speed is the airspeed which delivers the greatest gain in altitude in the shortest possible time.

Cruise Recommended Climb Speed for enroute climb. Climb

BEECHCRAFT Sierra 200 B24R

METEOROLOGICAL TERMINOLOGY

ISA	 International Standard Atmosphere in which (1) The air is a dry perfect gas; (2) The temperature at sea level is 15° Celsius (59° Fahrenheit); (3) The pressure at sea level is 29.92 in Hg. (1013.2 millibars); (4) The temperature gradient from sea level to the altitude at which the temperature is -56.5° C (-69.7° F) is -0.00198° C (-0.003566° F) per foot and zero above that 	
OAT	altitude. Outside Air Temperature is the free air static temperature, obtained either from inflight temperature indica- tions adjusted for instrument error and compressibility effects, or ground meteorological sources.	
Indicated Pressure Altitude	The number actually read from an altimeter when the barometric sub- scale has been set to 29.92 in Hg. (1013.2 millibars).	
Station Pressure	Actual atmospheric pressure at field elevation.	
Wind	The wind velocities recorded as variables on the charts of this hand- book are to be understood as the head- wind or tailwind components of the reported winds.	0

Pressure Altitude

Altitude measured from standard sea-level pressure (29.92 in. Hg) by a pressure or barometric altimeter. It is the indicated pressure altitude corrected for position and instrument error. In this Handbook, altimeter instrument errors are assumed to be zero. Position errors may be obtained from the Altimeter Correction Graph.

POWER TERMINOLOGY

Take off and	Highest power rating
Maximum	not limited by time.
Continuous	

ENGINE CONTROLS AND INSTRUMENTS

Throttle Used to control power by intro-Control ducing fuel-air mixture into the intake passages of the engine. Settings are reflected by readings on the manifold pressure gage.

Propeller This control requests the propeller Control governor to maintain engine/ propeller rpm at a selected value by controlling propeller blade angle.

Mixture This control is used to set fuel Control flow in all modes of operation and cuts off fuel completely for engine shut down.

EGT (Exhaust Gas Temperature Indicator) This indicator is used to identify the lean and best power fuel flow for various power settings.

BEECHCRAFT Sierra 200 B24R

Tachometer Indicates the rpm of the engine/ propeller.

Propeller Regulates the rpm of the engine/ Governor propeller by increasing or decreasing the propeller pitch through a pitch change mechanism in the propeller hub.

AIRPLANE PERFORMANCE AND FLIGHT PLANNING TERMINOLOGY

Climb Gradient	The ratio of the change in height during a portion of a climb, to the horizontal distance traversed in the same time interval.	
Demonstrated Crosswind Velocity	The demonstrated crosswind velocity is the velocity of the crosswind com- ponent for which adequate control of the airplane during take-off and land- ing was actually demonstrated during certification tests.	C
MEA	Minimum enroute IFR altitude.	(
Route Segment	A part of a route. Each end of that part is identified by: (1) a geograph- ical location; or (2) a point at which a definite radio fix can be established.	
GPH	U.S. Gallons per hour.	
PPH	Pounds per hour.	

1-18

WEIGHT AND BALANCE TERMINOLOGY

ReferenceAn imaginary vertical plane fromDatumwhich all horizontal distances are
measured for balance purposes.

Station

Arm

The horizontal distance from the reference datum to the center of gravity (C.G.) of an item.

A location along the airplane fuselage

usually given in terms of distance from the reference datum.

Moment The product of the weight of an item multiplied by its arm. (Moment divided by a constant is used to simplify balance calculations by reducing the number of digits.)

AirplaneThe point at which an airplane wouldCenter ofbalance if suspended. Its distanceGravityfrom the reference datum is found(C.G.)by dividing the total moment by the
total weight of the airplane.

C.G. Arm The arm obtained by adding the airplane's individual moments and dividing the sum by the total weight.

C.G. Limits The extreme center of gravity locations within which the airplane must be operated at a given weight.

Usable Fuel Fuel available for flight planning.

Fuel remaining after a runout test has been completed in accordance with governmental regulations.

Unusable

Fuel

BEECHCRAFT Sierra 200 B24R

-	The second s	(
Standard Empty Weight	Weight of a standard airplane including unusable fuel, full operating fluids and full oil.	
Basic Empty Weight	Standard empty weight plus optional equipment.	\cap
Payload	Weight of occupants, cargo and baggage.	
Useful Load	Difference between take-off weight, or ramp weight if applicable, and basic empty weight.	
Maximum Ramp Weight	Maximum weight approved for ground maneuvering. (It includes weight of start, taxi, and run-up fuel).	
Maximum Take-off Weight	Maximum weight approved for the start of the take-off run.	
Maximum Landing Weight	Maximum weight approved for the landing touchdown.	<u> </u>
Zero Fuel Weight	Weight exclusive of usable fuel.	C
Tare	The weight of chocks, blocks, stands, etc., used on the scales when weighing an airplane.	\cap
Leveling Points	Those points which are used during the weighing process to level the airplane.	
Jack Points	Points on the airplane identified by the manufacturer as suitable for supporting the airplane for weighing or other purposes.	0

SECTION II

LIMITATIONS

TABLE OF CONTENTS

SUBJECT	PAGE
Airspeed Limitations	. 2-3
Airspeed Indicator Markings	. 2-4
Power Plant Limitations	
Engine	. 2-4
Operating Limitations	. 2-5
Fuel Grades	. 2-5
Fuel Additives	. 2-5
Approved Oil Types	. 2-5
Propeller Specifications	2-5
Power Plant Instrument Markings	2-6
Miscellaneous Instrument Markings	. 2-6
Weight Limits	2-7
Center of Gravity Limits	. 2-7
Reference Datum	. 2-7
Maneuver Limits	. 2-7
Approved Maneuvers (2750 Pounds)	. 2-7
Flight Load Factors (2750 Pounds)	. 2-8
Takeoff	. 2-8
Minimum Flight Crew	. 2-8
Kinds of Operation Limits	. 2-8
Required Equipment for Various	
Conditions of Flight	. 2-8
Fuel	
Total Fuel	2-18
Fuel Management	2-18
Placards	2-19

Section II Limitations

BEECHCRAFT Sierra 200 B24R

 \bigcirc

INTENTIONALLY LEFT BLANK

The limitations included in this section have been approved by the Federal Aviation Administration.

The following limitations must be observed in the operation of this airplane.

CAS IAS KNOTS MPH KNOTS MPH REMARKS SPEED Never Exceed 168 193 168 193 Do not exceed this speed in VNE any operation Maximum 143 165 143 165 Do not exceed Structural this speed except in smooth Cruising air and then only VNO or VC with caution 125 144 125 144 Do not make full Maneuvering or abrupt control VA movements above this speed 110 Maximum 96 110 96 Do not extend Flap flaps or operate Extension/ with flaps ex-Extended tended above this speed VFF 135 155 135 155 Do not extend Maximum Landing Gear or operate Operating/ with landing gear Extended extended above this speed VIO and VIF 113 130 113 130 Do not retract Maximum Landing Gear landing gear Retraction above this speed.

AIRSPEED LIMITATIONS

*AIRSPEED INDICATOR MARKINGS

MARK-	C	AS	14	AS	SIGNIF-			
ING	KTS	MPH	KTS	MPH	ICANCE			
White Arc	55-96	63-110	55-96	63-110	Full Flap Operating Range			
Green Arc	62-143	71-165	62-143	71-165	Normal Operating Range			
Yellow Arc	143-168	165-193	143-168	165-193	Operate With Caution, Only in Smooth Air			
Red Line	168	193	168	193	Maximum Speed For All Operations			

* The limits of the arcs on the airspeed indicator are marked in CAS values.

POWER PLANT LIMITATIONS

ENGINE

One Avco Lycoming engine model IO-360-A1B6.

Take-off and Maximum Continuous Power Full Throttle at 2700 rpm

OPERATING LIMITATIONS

ngine Speed 2700 rpm	
Oil Temperature 245°F	
il Pressure	
Minimum	
Maximum 100 psi	
uel Pressure	
Minimum 0.5 psi	
Maximum 12.0 psi	
Mixture - Set per leaning instructions on performance charts.	
E *(0 F	Engine Speed

*All temperatures are established for a 100°F day.

FUEL GRADES

Aviation Gasoline 100 (green), or 100LL (blue) minimum grade.

FUEL ADDITIVES

Alcor TCP Concentrate mixed according to the instructions provided by Alcor, Inc.

APPROVED OIL TYPES

Avco Lycoming Specification Number 301E approves for use lubricating oils which conform to both MIL-L-6082B straight mineral type and MIL-L-22851 ashless dispersant lubricants for airplane engines. Refer to the Approved Engine Oils table in the HANDLING, SERVICING AND MAINTENANCE section for a list of approved products.

PROPELLER SPECIFICATIONS

Hartzell constant speed, two-blade aluminum alloy propeller using HC-M2YR-1BF hub with F7666A-2R blades. Pitch settings at 30-inch station, Low $14.4^{\circ} \pm .2^{\circ}$, High $29^{\circ} \pm 2^{\circ}$. Diameter is 74 inches, no cutoff permitted. Section II Limitations

BEECHCRAFT Sierra 200 B24R

POWER PLANT INSTRUMENT MARKINGS

OIL TEMPERATURE Caution (Yellow Arc)	\cap
OIL PRESSURE Minimum Pressure (Red Line)	
FUEL FLOW Minimum (Red Line) 0.5 psi Operating Range (Green Arc) 4.0 to 16.6 gph Maximum (Red Line) 12.0 psi	
TACHOMETER Normal Operating Range (Green Arc) 2200 to 2700 rpm Maximum RPM (Red Radial) 2700 rpm	
MANIFOLD PRESSURE Operating Range 15 to 28.7 in. Hg	

MISCELLANEOUS INSTRUMENT MARKINGS

INSTRUMENT AIR Operating Range 4.3 to 5.9 in. Hg

FUEL QUANTITY

Yellow Band E to 3/8 full

WEIGHT LIMITS

Maximum Ramp Weight	2758 lbs
Maximum Take-off	
and Landing Weight	2750 lbs

Zero Fuel Weight No Structural Limitation Maximum Baggage Compartment Load 270 lbs

CENTER OF GRAVITY LIMITS (Gear Down)

Forward: 110 inches aft of datum to 2375 lbs with straight line variation to 113 inches at 2750 lbs.

Aft: 118.3 inches aft of datum at all weights.

REFERENCE DATUM

Datum is 103 inches forward of wing leading edge.

MAC length is 52.7 inches.

MANEUVER LIMITS

This is a normal category airplane. Spins are prohibited. No acrobatic maneuvers are approved except those listed below. Maximum slip duration is 30 seconds.

APPROVED MANEUVERS (2750 POUNDS)

٨	MANEUVER EI	NTRY SPEED (CAS)
	(Bank angles, no more the	an 60°)
	Chandelle	125 kts/144 mph
	Steep Turn	125 kts/144 mph
	Lazy Eight	125 kts/144 mph
	Stall (Except Whip) Use	e slow deceleration

Section II Limitations

BEECHCRAFT Sierra 200 B24R

FLIGHT LOAD FACTORS (2750 POUNDS)

Flight ma	neuver	ing	lo	ad	fa	ac	to	r												
Flaps	Up									• •	•	 •	•			+	3	.8,	-1.9	
Flaps	Down	• •	• •						•						•			•	+1.9	

TAKEOFF

Set 15° flaps for takeoff.

MINIMUM FLIGHT CREW

One (1) Pilot

KINDS OF OPERATION LIMITS

- 1. VFR day and night
- 2. IFR day and night

REQUIRED EQUIPMENT FOR VARIOUS CONDITIONS OF FLIGHT

Federal Aviation Regulations (91.3(a), 91.24, 91.25, 91.32, 91.33, 91.52, 91.90, 91.97, 91.170) specify the minimum numbers and types of airplane instruments and equipment which must be installed and operable for various kinds of flight conditions. This includes VFR day, VFR night, IFR day, and IFR night.

Regulations also require that all airplanes be certificated by the manufacturer for operations under various flight conditions. At certification, all required equipment must be in operating condition and should be maintained to assure continued airworthiness. If deviations from the installed equipment were not permitted, or if the operating rules did not provide for various flight conditions, the airplane could not be flown unless all equipment was operable. With appropriate limitations, the operation of every system or component installed in the airplane is not necessary, when

the remaining operative instruments and equipment provide for continued safe operation. Operation in accordance with limitations established to maintain airworthiness, can permit continued or uninterrupted operation of the airplane temporarily.

For the sake of brevity, the Required Equipment Listing does not include obviously required items such as wings, rudders, flaps, engine, landing gear, etc. Also the list does not include items which do not affect the airworthiness of the airplane such as entertainment systems, passenger convenience items, etc. However, it is important to note that ALL ITEMS WHICH ARE RELATED TO THE AIR-WORTHINESS OF THE AIRPLANE AND NOT INCLUDED ON THE LIST ARE AUTOMATICALLY REQUIRED TO BE OPERATIVE.

To enable the pilot to rapidly determine the FAA equipment requirements necessary for a flight into specific conditions, the following equipment requirements and exceptions are presented. It is the final responsibility of the pilot to determine whether the lack of, or inoperative status of a piece of equipment on his airplane, will limit the conditions under which he may operate the airplane.

WARNING

FLIGHT IN KNOWN ICING CONDITIONS PROHIBITED.

LEGEND

Numbers refer to quantities required to be operative for a specified condition.

- (-) Indicates that the item may be inoperative for the specified condition.
- (*) Refer to the REMARKS AND/OR EXCEPTIONS column for explicit information or reference.

BEECHCRAFT

Sierra 200 B24R

Section II Limitations

- Per Person or Per FAR 91.33 - Per FAR 91.52	-*Optional
	*
	*
~ ~	*
	*
EQUIPMENT AND FURNISHING Seat belts and Shoulder harness Emergency locator trans- mitter	FIRE PROTECTION Portable fire extinguisher

- /

	Night	IFR Day	IFR Night	Remarks and/or Exceptions		1 - May be inoperative for ferry f	provided tabs are visually che in the neutral position prior to takeoff and checked for full ri	of operation. 1 1 - May be inoperative provided f	travel is visually inspected pr to takeoff.	1	
Day	VFR					-		-		-	
VFR						-				-	\bigcirc
	SYSTEM	and/or	COMPONENT		FLIGHT CONTROLS	Stabilator trim tab indicator		Flap position indicator	(On electric flap system)	Stall warning	

Section II
Limitations

		- One may be inoperative pro- vided other side is operational	be established to be adequate for the intended flight.		-*Optional	-*Optional
		0	-		*	
-		0	-		*	٦
		0	-		*	*
		0	-		*	*
	FUEL EQUIPMENT	Auxiliary fuel pump Engine driven fuel pump Fuel quantity indicator	Fuel flow indicator	ICE AND RAIN PROTECTION	Emergency static	Pitot heater

BEECHCRAFT Sierra 200 B24R

										- ()
			Night	Remarks and/or Exceptions		- May be inoperative provided op-	erations are continued only to a point where repairs can be ac- complished. Gear must be left down.			
	1	Day	IFR			.		4	-	
Aliab	ngin	IFR				-		4	~	.
Day	777					-		4	-	_
VFR						-		4	-	
SYSTEM		and/or	COMPONENT		LANDING GEAR	-anding gear motor		anding gear	position lights -anding gear warning horn	

Section II Limitations

\bigcirc																			
		-*Lights must be operative.	87		-*Per FAR 91.33	-*Optional							ð:					-*Per FAR 91.24, 91.90, 91.97	-*Per FAR 91.33
		*		1	*	-	ო			-	-	L2	-		, -			*	*
		1		ı	5	*	,			-		Ĵ.	-	-	-	-	-	*	*
		*		.e	*	-	Ю			. 	.	-	-		1		α,	*	r.
0		1		1	1	*	ę	 		-	-		-	,	,		ī	*	r
	LIGHTS	Cockpit and instrument	lights	Taxi light	Landing light	Rotating beacon	Position light	NAVIGATION	INSTRUMENTS	Altimeter	Airspeed indicator	Vertical speed	Magnetic compass	Attitude indicator	Turn coordinator	Directional gyro	Clock	Transponder	Navigation equipment

	VFR	Day			
SYSTEM		VFF	Nigh	nt	
and/or		19	IFR	Day	
COMPONENT				IFR	Night
					Remarks and/or Exceptions
					2 -
VACUUM					
Vacuum system for	a	1			
instrument air					
Vacuum gage	ı	,	-	-	
ENGINE INDICATING INSTRUMENTS					
	11	3	0	3	
Engine tachometer indicator		-		-	to account of the
Exhaust gas temperature	*	*	*	*	-*Optional
indicator					
Manifold pressure indicator		-	-		
	_		_	_	

BEECHCRAFT Sierra 200 B24R

FUEL

TOTAL FUEL with left and right wing fuel systems full:

Two *29.9-gallon tanks in wings with a total of *52.2 gallons usable.

*Value given is nominal. Tank capacity will vary with temperature and manufacturing tolerances.

Do not take off when the Fuel Quantity Gages indicate in the Yellow Band or with less than 11 gallons in each main tank.

Maximum slip duration: 30 seconds

Section II Limitations

PLACARDS

On Left Cabin Door (CAS):

On Upper Right Instrument Panel:

IN CASE OF FIRE IN ENGINE COMPARTMENT CLOSE DEFROST & CABIN AIR VALVE

BEECHCRAFT Sierra 200 B24R

PLACARDS (Cont'd)

On Left Cabin Door:

On Floorboard in Front of Pilot's Seat:

On Inside of Emergency Gear Extension Access Door:

Section II Limitations

On Fuel Selector Panel:

Adjacent to Engine Instrument Cluster:

On Pedestal Between Front Seats:

BEECHCRAFT Sierra 200 B24R

PLACARDS (Cont'd)

Adjacent to Flap Switch on Right Subpanel:

USE 15° FLAPS FOR TAKE OFF

On Flap Extension Handle (CAS):

FLAPS PULL TO EXTEND, MAX SPEED 110 MPHRETRACTED0°FIRST NOTCH15°SECOND NOTCH25°THIRD NOTCH35°

On Upper Right Instrument Panel:

On Lower Sidewall Adjacent to Pilot (when installed):

or

or

PLACARDS (Cont'd)

On Upper Aft Corner of Each Cabin Door:

2-24

Section II Limitations

On Lower Left Sidewall Panel:

TO LEVEL AIRCRAFT - LEVEL

BAGGAGE COMPARTMENT FLOOR

On Baggage Compartment Door:

BAGGAGE COMPARTMENT 270 POUNDS

MAXIMUM CAPACITY

On Aft Cabin Bulkhead:

February 1980

2-25

 \oplus

BEECHCRAFT Sierra 200 B24R

PLACARDS (Cont'd)

On Bulkhead Below Hat Shelf When 5th and 6th Seats Are Installed:

MAXIMUM FIFTH AND SIXTH SEAT STRUCTURAL CAPACITY 250 POUNDS REFER TO WEIGHT AND BALANCE FOR LOADING INSTRUCTIONS NO SMOKING IN FIFTH AND SIXTH SEAT

On Second Window Frame on Right Side. Installed on MC-354 and After When Required by Weight and Balance Data:

On Right Sidewall Below Third Window When 5th and 6th Seats Are Installed:

NO SMOKING IN FIFTH AND SIXTH SEAT

On Inside of Baggage Door (MC-261 and after or after compliance with Beechcraft S.I. No. 0685-106):

CAUTION

DOOR CAN BE OPENED FROM INSIDE

Section II Limitations

On Baggage Door Adjacent to Handle: (Prior to MC-181)

(MC-181 thru MC-426)

(MC-427 thru MC-451 and MC-181 thru MC-426 after compliance with Beechcraft S.I. No. 0793-106)

BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

February 1980

2-28

SECTION III

EMERGENCY PROCEDURES

TABLE OF CONTENTS

	SUBJECT	PAGE
	Emergency Airspeeds	3-3
	Engine Failure	
	During Take-Off Ground Roll	3-4
	After Liftoff and in Flight	3-4
	Engine Discrepancy Checks	
	Rough Running Engine	3-5
	Loss of Engine Power	3-5
	Airstart Procedure	3-6
	Engine Fire	
	In Flight	3-6
	On the Ground	3-7
	Emergency Descent	3-7
	Maximum Glide Configuration	3-7
-	Landing Emergencies	
	Landing Without Power	3-8
	Landing Gear Retracted - With Power	3-8
Y	Systems Emergencies	
1	Propeller Overspeed	3-9
	Alternator-Out Procedure	3-9
	Unscheduled Electric Elevator Trim	3-10
	Landing Gear Manual Extension	3-10
	Landing Gear Retraction After Practice	
)	Manual Extension	3-11
	Emergency Static Air Source System	3-11
	Unlatched Door in Flight	3-12
	ana mana ana ang ang mang ang mang ang mang m	

Section III Emergency Procedures

BEECHCRAFT Sierra 200 B24R

TABLE OF CONTENTS (Continued)

SUBJECT PAGE Spins 3-12 Emergency Speed Reduction 3-12

Section III Emergency Procedures

All airspeeds quoted in this section are indicated airspeeds (IAS).

EMERGENCY AIRSPEEDS

	Emergency Descent	135	kts/155	mph
	Glide	91	kts/105	mph
)	Emergency Landing Approach	74	4 kts/85	mph

Stall warning horn is inoperative when BATTERY & ALT switch is turned off.

The following information is presented to enable the pilot to form, in advance, a definite plan of action for coping with the most probable emergency situations which could occur in the operation of the airplane. Where practicable, the emergencies requiring immediate corrective action are treated in check list form for easy reference and familiarization. Other situations, in which more time is usually permitted to decide on and execute a plan of action, are discussed at some length. Section III Emergency Procedures BEECHCRAFT Sierra 200 B24R

ENGINE FAILURE

DURING TAKE-OFF GROUND ROLL

- 1. Throttle CLOSED
- 2. Braking MAXIMUM

NOTE

Conduct the following procedures immediately if it appears certain that the airplane will run off the runway. (Otherwise conduct these procedures at the pilot's discretion.)

- 3. Fuel Selector Valve OFF
- 4. BATTERY & ALT, ALT, and FUEL BOOST switches OFF
- 5. Magneto/Start Switch OFF

AFTER LIFTOFF AND IN FLIGHT

Landing straight ahead is usually advisable. If sufficient altitude is available for maneuvering, accomplish the following:

 \bigcirc

- 1. Mixture FULL RICH
- 2. Fuel Boost Pump ON
- Fuel Selector Valve SELECT OTHER TANK (Check to feel detent and check visually)
- 4. Magnetos CHECK LEFT and RIGHT, then BOTH

NOTE

The most probable cause of engine failure would be loss of fuel flow or improper functioning of the ignition system.

IF NO RESTART:

- 1. Establish maximum glide configuration
- 2. Throttle CLOSE
- 3. Fuel Selector Valve OFF
- 4. Mixture IDLE CUT-OFF
- 5. Magneto/Start Switch OFF
- 6. FUEL BOOST switch OFF

When certain of reaching the selected landing site:

- 7. Airspeed 74 kts/85 mph
- 8. Flaps AS REQUIRED
- 9. Landing Gear DOWN or UP (depending on terrain)
- 10. BATTERY & ALT and ALT switches OFF

ENGINE DISCREPANCY CHECKS

CONDITION: ROUGH RUNNING ENGINE

- 1. Mixture FULL RICH, then LEAN as required
- Magneto/Start Switch CHECK LEFT and RIGHT, then BOTH

CONDITION: LOSS OF ENGINE POWER

1. Fuel Flow Gage - CHECK

If fuel flow is abnormally low:

- a. Mixture FULL RICH
- b. Auxiliary Fuel Pump ON (Lean as required)
- c. Auxiliary Fuel Pump OFF if performance does not improve in a few moments

Section III Emergency Procedures

BEECHCRAFT Sierra 200 B24R

2. Fuel Quantity Indicator - CHECK for fuel supply in tank being used

If tank being used is empty: Fuel Tank Selector Valve - SELECT OTHER FUEL TANK (feel for detent and check visually)

AIR START PROCEDURE

- 1. Fuel Selector Valve SELECT TANK MORE NEARLY FULL (check to feel detent and check visually)
- 2. Throttle AS REQUIRED
- 3. Mixture FULL RICH
- 4. Propeller AS REQUIRED
- 5. Fuel Boost Pump ON OR OFF as required
- 6. Magneto/Start switch BOTH

NOTE

When engine starts, adjust throttle, propeller, and mixture controls.

ENGINE FIRE

IN FLIGHT

The ventilation controls must be closed to shut off all heating system outlets so that smoke and fumes will not enter the cabin. The control labeled CABIN AIR must be pulled aft to close. The control labeled DEFROST must be pushed forward to close. In the event of an engine fire, shut down the engine as follows and make a landing:

- 1. Fuel Selector Valve OFF
- 2. Mixture IDLE CUT-OFF
- 3. Propeller FULL FORWARD position
- 4. Throttle CLOSE
- 5. Cabin Air Control (Red Knob) pull OFF
- 6. Defrost Valve (Red Knob) push OFF
- 7. BATTERY & ALT switch OFF (Extending the gear can be accomplished manually if desired)
- 8. Magneto/Start Switch OFF
- 9. Do not attempt to restart engine

ON THE GROUND

- 1. Fuel Selector Valve OFF
- 2. Throttle CLOSED
- 3. Mixture IDLE CUT-OFF
- 4. BATTERY & ALT Switch OFF
- 5. Magneto/Start Switch OFF
- 6. Extinguish with Fire Extinguisher.

EMERGENCY DESCENT

- 1. Propeller FULL FORWARD position
- 2. Throttle IDLE
- 3. Landing Gear DOWN
- 4. Airspeed ESTABLISH 135 kts/155 mph

MAXIMUM GLIDE CONFIGURATION

- Landing Gear UP (Landing gear safety switch OFF if safety system is installed)
- 2. Flaps UP
- 3. Propeller FULL AFT position
- 4. Airspeed 91 kts/105 mph

Glide distance (Zero Wind Condition) is approximately 1.7 nautical miles (2 statute miles) per 1000 feet of altitude above the terrain.

LANDING EMERGENCIES

LANDING WITHOUT POWER

When assured of reaching the landing site selected, and on final approach:

- 1. Airspeed 74 kts/85 mph
- 2. Fuel Selector Valve OFF
- 3. Mixture IDLE CUT-OFF
- 4. Magneto/Start Switch OFF
- 5. Flaps AS REQUIRED
- 6. Landing Gear DOWN or UP, DEPENDING ON TERRAIN
- 7. BATTERY & ALT, ALT, and FUEL BOOST Switches OFF

LANDING GEAR RETRACTED - WITH POWER

If possible, choose firm sod or foamed runway. Make a normal approach, using flaps as necessary. When you are sure of making the selected landing spot:

- 1. Throttle CLOSED
- 2. Airspeed NORMAL APPROACH SPEED
- 3. Fuel Selector Valve OFF
- 4. Mixture IDLE CUT-OFF
- 5. Flaps AS REQUIRED
- 6. BATTERY & ALT, ALT and Magneto/Start Switches -OFF
- 7. Keep wings level during touchdown.
- 8. Get clear of the airplane as soon as possible after it stops.

SYSTEMS EMERGENCIES

PROPELLER OVERSPEED

- 1. Throttle RETARD TO MINIMUM CRUISE RPM
- Airspeed REDUCE (initiate climb to load propeller if time permits)
- 3. Oil Pressure CHECK

WARNING

If loss of oil pressure was the cause of overspeed, the engine will seize after a short period of operation. If this occurs:

 Land - SELECT NEAREST SUITABLE SITE and follow ENGINE FAILURE AFTER LIFTOFF AND IN FLIGHT procedures.

ALTERNATOR-OUT PROCEDURE

A failure of the alternator will place the entire electrical operation of the airplane on the battery. Alternator failure will be indicated by a discharging or fluctuating ammeter.

- 1. ALT switch OFF
- 2. All nonessential electrical loads OFF (to conserve the battery life)

WARNING

Deactivation of the battery switch, alternator switch, or alternator circuit breaker during flight is prohibited, except as required by an actual emergency.

UNSCHEDULED ELECTRIC STABILATOR TRIM

- 1. Airplane Attitude MAINTAIN using stabilator control.
- Stabilator Trim Thumb Switch (On Control Wheel) -MOVE IN DIRECTION OPPOSITE UNSCHEDULED PITCH TRIM to open circuit breaker.
- 3. Stabilator Trim ON-OFF Switch (On Instrument Panel) - OFF
- 4. Manual Stabilator Trim Control Wheel RETRIM AS DESIRED.

NOTE

Do not attempt to operate the electric trim system until the cause of the malfunction has been determined and corrected.

LANDING GEAR MANUAL EXTENSION

Manual extension of the landing gear can be facilitated by first reducing airspeed. Then proceed as follows:

- 1. LDG GEAR MOTOR Circuit Breaker OFF (PULL OUT)
- 2. Landing Gear Switch Handle DOWN position
- 3. Throttle 12 in. Hg (or less) of manifold pressure
- 4. Airspeed 87 kts/100 mph
- 5. Emergency Extension Valve OPEN (Use Emergency Gear Extension Wrench - Turn Counterclockwise)

WARNING

After landing do not move any landing gear controls or reset any switches or circuit breakers until airplane is on jacks as failure may have been in the gear up circuit and gear might retract on the ground.

LANDING GEAR RETRACTION AFTER PRACTICE MANUAL EXTENSION

After practice manual extension of the landing gear, the gear may be retracted electrically, as follows:

- 1. Emergency Extension Valve CLOSE (use Emergency Gear Extension Wrench, turn clockwise)
- 2. Landing Gear Motor Circuit Breaker PUSH IN
- 3. Landing Gear Switch Handle UP

EMERGENCY STATIC AIR SOURCE SYSTEM

THE EMERGENCY STATIC AIR SOURCE SHOULD BE USED FOR CONDITIONS WHERE THE NORMAL STATIC SOURCE HAS BEEN OBSTRUCTED. When the airplane has been exposed to moisture and/or icing conditions (especially on the ground), the possibility of obstructed static ports should be considered. Partial obstructions will result in the rate of climb indication being sluggish during a climb or descent. Verification of suspected obstruction is possible by switching to the emergency system and noting a sudden sustained change in rate of climb. This may be accompanied by abnormal indicated airspeed and altitude changes beyond normal calibration differences.

Whenever any obstruction exists in the Normal Static Air System or the Emergency Static Air System is desired for use:

- 1. Emergency Static Air Source Switch to ON -EMERGENCY. (Lower Sidewall Adjacent to Pilot)
- 2. For Airspeed Calibration and Altimeter Correction, refer to PERFORMANCE section.

CAUTION

Be certain the emergency static air valve is in the OFF - NORMAL position when system is not needed.

UNLATCHED DOOR IN FLIGHT

If the cabin door latch is not fully engaged it may come unlatched in flight. This may occur during or just after take-off. The door will trail in a position approximately 3 inches open. A buffet may be encountered with the door open in flight. Return to the field in a normal manner. If practicable, during the landing flare-out have a passenger hold the door to prevent it from swinging open.

SPINS

WARNING

Intentional spins are prohibited.

RECOVERY

If a spin is entered inadvertently:

Immediately move the control column full forward and simultaneously apply full rudder opposite to the direction of the spin; continue to hold this control position until rotation stops and then neutralize all controls and execute a smooth pullout. Ailerons should be neutral and throttle in idle position at all times during recovery.

EMERGENCY SPEED REDUCTION

In an emergency, the landing gear may be used to create additional drag. Should disorientation occur under instrument conditions, the lowering of the landing gear will reduce the tendency for excessive speed build-up. This procedure would also be appropriate for a non-instrument rated pilot who unavoidably encounters instrument conditions or in other emergencies such as severe turbulence.

Should the landing gear be used at speeds higher than the maximum extension speed, a special inspection of the gear doors in accordance with shop manual procedures is required, with repair as necessary.

SECTION IV

NORMAL PROCEDURES

TABLE OF CONTENTS

SUBJECT

PAGE

	Airspeeds for Safe Operation	4-3
	Preflight Inspection	4-3
	Before Starting	4-5
	External Power	4-6
	Starting Engine Using Auxiliary Power Unit	4-7
	Starting	4-7
	Cold Start	4-7
	Hot Start	4-7
	Flooded Engine	4-8
	After Starting, and Before Taxi	4-8
	Before Takeoff	4-8
	Takeoff	4-9
/	Climb	4-10
	Cruise	4-10
	Leaning Using the Exhaust Gas Temperature	
	Indicator (EGT)	4-10
Ì	Descent	4-11
6	Before Landing	4-11
	Balked Landing	4-12
	After Landing	4-12
	Shutdown	4-12
	Environmental Systems	4-12
/	Heating and Ventilation	4-12
	Cold Weather Operation	4-13
	Preflight Inspection	4-13

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

TABLE OF CONTENTS (Continued)

SUBJECT

PAGE

Engine		 	4-13
Icing Conditions		 	4-14
Engine Break-In	Information	 	4-14

Section IV Normal Procedures

AIRSPEEDS FOR SAFE OPERATION

Take-off (15° flaps) Lift-off 50 Ft. Maximum Climb Best Rate (V_{γ}) Best Angle (V_{χ}) Cruise Climb Maximum Turbulent Air Penetration Balked Landing Landing Approach Maximum Demonstrated Crosswind

62 kts/71 mph 65 kts/75 mph 80 kts/92 mph 72 kts/83 mph 96 kts/110 mph 125 kts/144 mph

74 kts/85 mph 74 kts/85 mph 74 kts/85 mph

17 kts/20 mph

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

- 1. CABIN:
 - a. Parking Brake SET
 - b. Control Lock REMOVE
 - c. Landing Gear Handle DOWN
 - d. All Switches OFF
- 2. LEFT WING TRAILING EDGE:
 - a. Flap CHECK
 - b. Fuel Vent Line UNOBSTRUCTED
 - c. Aileron CHECK
 - d. Wing Tip CHECK
 - e. Position Light CHECK
- 3. LEFT WING LEADING EDGE:
 - a. Pitot Tube CHECK, (Remove Cover)
 - b. Landing Light CHECK
 - c. Tie Down and Chocks REMOVE
 - d. Stall Warning CHECK for movement of vane
 - e. Fuel Tank CHECK QUANTITY; Filler Cap SECURE.
- 4. LEFT LANDING GEAR:
 - a. Wheel Well, Tire and Brake CHECK
 - b. Fuel Sump DRAIN
- 5. NOSE SECTION:
 - a. Left Cowl SECURE
 - Induction Air Intake CLEAR, Filter CHECK for condition and security of attachment.
 - c. Propeller CHECK, General Condition, Nicks, etc.
 - d. Tire and Nose Gear CHECK
 - e. Engine Oil CHECK (See Servicing, Section 8) Cap and Dipstick - SECURE
 - f. Right Cowl SECURE
 - g. Fuel Strainer DRAIN
 - h. Chocks REMOVE
- 6. RIGHT LANDING GEAR:
 - a. Fuel Sump DRAIN
 - b. Wheel Well, Tire and Brake CHECK
- 7. RIGHT WING LEADING EDGE:
 - a. Fuel Tank CHECK QUANTITY; Filler Cap SECURE
 - b. Tie Down and Chocks REMOVE
 - c. Taxi Light CHECK
 - d. Wing Tip CHECK
 - e. Position Light CHECK
- 8. RIGHT WING TRAILING EDGE:
 - a. Aileron CHECK
 - b. Flap CHECK
 - c. Fuel Tank Vent Line UNOBSTRUCTED
- 9. RIGHT FUSELAGE:
 - a. Static Pressure Button UNOBSTRUCTED
 - b. Emergency Locator Transmitter ARMED
- 10. EMPENNAGE:
 - a. Control Surfaces CHECK
 - b. Tie Down REMOVE
 - c. Position Light CHECK
- 11. LEFT FUSELAGE:
 - a. Static Pressure Button UNOBSTRUCTED
 - b. All Antennas CHECK
 - c. Baggage Door CHECK

BEFORE STARTING

- 1. Seats POSITION AND LOCK; Seat Backs UPRIGHT
- 2. Seat Belts and Shoulder Harnesses FASTEN
- 3. Parking Brake SET
- 4. All Avionics OFF
- 5. Circuit Breakers IN

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

- 6. Landing Gear Handle DOWN
- 7. Flaps UP
- 8. Light Switches AS REQUIRED
- 9. Electric Stabilator Trim Switch OFF (if installed)
- 10. BATTERY & ALT Switch ON
- ALT Switch ON (If external power is used, turn ALT Switch - OFF)
- 12. Fuel Boost Pump ON (Check for operation, then OFF)
- Fuel Selector ROTATE thru 360° and check for freedom of movement, set on tank more nearly full (feel for detent and check visually)

WARNING

Do not take off if gages indicate in yellow arc on either gage.

EXTERNAL POWER

The following precautions shall be observed while using external power:

- The BATTERY/ALT switch shall be ON. The ALT switch as well as all avionics and electrical switches should be OFF. This protects the voltage regulator and associated electrical equipment from transients (power fluctuations).
- The airplane has a negative ground system. Exercise care to avoid reversed polarity. Connect the positive lead of the external power unit to the positive terminal of the airplane's external power receptacle and the negative lead to the negative terminal of the external power receptacle.
- 3. To prevent arcing, no power shall be supplied while the connection is being made.

Section IV Normal Procedures

STARTING ENGINE USING AUXILIARY POWER UNIT

- 1. Alternator, Electrical, and Avionics Equipment OFF
- 2. Auxiliary Power Unit CONNECT
- Auxiliary Power Unit SET OUTPUT (13.75 to 14.25 volts)
- 4. Auxiliary Power Unit ON
- 5. Engine START using normal procedures
- Auxiliary Power Unit OFF (after engine has been started)
- 7. Auxiliary Power Unit DISCONNECT
- 8. Alternator Switch ON

STARTING

- 1. Propeller FULL FORWARD (High rpm)
- 2. Engine Start

CAUTION

Starter cranking period should be limited to a maximum of 30 seconds, with at least 2 minutes between cranking periods.

Cold Start:

- a. Mixture FULL RICH
- b. Throttle FAST IDLE position
- c. Fuel Boost Pump ON (max. of 3 sec. then OFF)
- d. Magneto/Start Switch START position (release to BOTH position when engine fires)

Hot Start:

- a. Mixture IDLE CUT-OFF
- b. Throttle FAST IDLE -position
- c. Magneto/Start Switch ENGAGE
- Mixture ADVANCE MIXTURE SLOWLY until engine starts firing regularly

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

Flooded Engine:

- a. Mixture IDLE CUT-OFF
- b. Throttle FULL OPEN
- c. Magneto/Starter Switch ENGAGE
- d. Mixture ADVANCE MIXTURE SLOWLY as engine starts firing regularly
- e. Throttle RETARD (to fast idle position)
- 3. External Power (if used) OFF DISCONNECT
- 4. ALT switch ON (If external power was used)
- 5. Oil Pressure IN YELLOW ARC WITHIN 30 SECONDS
- 6. Warm-up 1000 to 1200 RPM
- 7. Engine Instruments CHECK
- 8. Throttle 1500 RPM
- 9. Ammeter CHECK

CAUTION

Charge indication should begin to decrease within 2 minutes after engine start and should be within 1/4 scale of zero prior to takeoff. If not, an electrical difficulty is indicated, and the airplane should be shut down.

10. Throttle - IDLE

AFTER STARTING, AND BEFORE TAXI

- 1. Parking Brakes RELEASE
- 2. Brakes RELEASE AND CHECK
- 3. Avionics Equipment ON, AS REQUIRED
- 4. Lights AS REQUIRED

BEFORE TAKEOFF

- 1. Parking Brake SET
- 2. Seat Belts and Shoulder Harnesses CHECK

NOTE

All reclining seats must be in the upright position during take-off.

- 3. Avionics CHECK
- 4. Engine Instruments CHECK
- 5. Flight Instruments CHECK AND SET
- 6. Throttle 2000 RPM
- Magnetos CHECK at 2000 rpm, maximum drop of 100 rpm on each magneto, variance between individual magnetos should not exceed 25 rpm.
- 8. Propeller EXERCISE to obtain 300 to 400 rpm drop; return to high rpm.
- 9. Throttle 1500 RPM
- Ammeter CHECK for stabilized indication within 1/4 scale of zero.
- 11. Throttle FAST IDLE
- 12. Stabilator Trim TAKE-OFF RANGE (White Band)
- 13. Flaps CHECK and SET (15°)
- 14. Controls CHECK FREE and for proper direction of travel
- 15. Mixture FULL RICH (or as required by field elevation)
- 16. Doors and Window SECURE
- 17. Parking Brake RELEASE
- Instruments CHECK (make final check of manifold pressure, fuel flow, and rpm at the start of the takeoff run)

TAKEOFF

Takeoff Full Throttle - 2700 RPM Cruise Climb Full Throttle - 2700 RPM

NOTE

Do not takeoff or land with the Fuel Boost Pump ON. The Fuel Boost Pump should be used only for starting and in the event of an emergency.

- 1. Power SET TAKE-OFF POWER (Mixture SET as required by field elevation)
- 2. Brakes RELEASE THEN ACCELERATE to recommended speeds

Revised: October 1984

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

- Landing Gear RETRACT (when positive rate of climb is established and insufficient runway remains for landing)
- 4. Airspeed ESTABLISH DESIRED CLIMB SPEED (when clear of obstacles)

CLIMB

- 1. Flaps UP
- 2. Power AS REQUIRED
- 3. Mixture LEAN AS REQUIRED
- 4. Temperature MONITOR

CRUISE

- Power SET AS DESIRED (use tables in PERFORMANCE Section)
- Mixture LEAN AS REQUIRED (tighten friction on pushpull type control)

LEANING USING THE EXHAUST GAS TEMPERATURE INDICATOR (EGT)

For level flight at 75% power or less, the EGT unit should be used in the following manner:

- 1. Lean the mixture and note the point on the indicator that the temperature peaks and starts to fall.
 - CRUISE (LEAN) MIXTURE Enrich mixture until the EGT shows a drop of 25°F below peak on the rich side of peak.
 - BEST POWER MIXTURE Enrich mixture until the EGT shows a drop of 75°F below peak on the rich side of peak.

CAUTION

Do not continue to lean mixture beyond that necessary to establish peak temperature.

Section IV Normal Procedures

- 2. Continuous operation is recommended at 25°F or more below peak EGT only on the rich side of peak.
 - Changes in altitude and power settings require the peak EGT to be rechecked and the mixture reset.

DESCENT

- 1. Altimeter SET.
- Power AS REQUIRED (avoid prolonged idle settings which may cause low cylinder head temperatures).
- 3. Mixture ENRICH AS REQUIRED.

BEFORE LANDING

1. Seat Belts and Shoulder Harnesses - SECURE.

NOTE

All reclining seats must be in the upright position during landing.

- 2. Fuel Selector Valve SELECT TANK MORE NEARLY FULL (feel for detent and check visually).
- 3. Mixture FULL RICH (or as required by field elevation)
- Landing Gear DOWN and CHECK (observe maximum extension speed)
- 5. Landing and Taxi Lights AS REQUIRED
- 6. Flaps DOWN (observe maximum extension speed)

WARNING

The distance for a Flaps Up landing will be greater than for a Flaps Down landing.

- 7. Airspeed ESTABLISH LANDING APPROACH SPEED
- 8. Propeller FULL FORWARD

Revised: October 1984

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

BALKED LANDING

- 1. Mixture FULL RICH (or as required by field elevation)
- 2. Propeller FULL FORWARD
- 3. Power FULL THROTTLE, 2700 RPM
- 4. Landing Gear UP
- 5. Airspeed 74 kts/85 mph until clear of obstacles, then trim to BEST RATE-OF-CLIMB
- 6. Flaps UP

AFTER LANDING

- 1. Landing and Taxi Lights AS REQUIRED
- 2. Flaps UP
- 3. Trim Tab SET TO 0°

SHUTDOWN

- 1. Parking Brakes SET
- 2. Electrical and Avionics Equipment OFF
- 3. Throttle CLOSE
- 4. Mixture IDLE CUT-OFF
- 5. Magneto/Start Switch OFF, after engine stops
- 6. BATTERY & ALT Switch OFF
- 7. ALT Switch OFF
- 8. Control Lock INSTALL if conditions warrant.
- Install wheel chocks and release parking brakes if the airplane is to be left unattended.

ENVIRONMENTAL SYSTEMS

HEATING AND VENTILATION

Refer to the SYSTEMS DESCRIPTION Section for operation of heating and ventilation controls.

Revised: October 1984

4-12

Section IV Normal Procedures

COLD WEATHER OPERATION

PREFLIGHT INSPECTION

All accumulations of ice, snow and frost must be removed from the wings, tail, control surfaces and hinges, propeller, windshield, pitot tube, static ports, antennas, fuel cell filler caps, crankcase vents, and fuel vents. If such accumulations are not removed completely, the airplane shall not be flown. The deposits will not blow off in flight. While an adverse weight factor is clearly involved in the case of heavy deposits, it is less obvious that even slight accumulations will disturb or completely destroy the designed aerodynamic properties of the airfoils.

The normal preflight procedures should then be completed, with particular attention given to check of flight controls for complete freedom of movement.

ENGINE

Use engine oil in accordance with Consumable Materials in the HANDLING, SERVICING AND MAINTENANCE Section.

WARNING

Ascertain that magneto switch and battery master switch are off before moving propeller by hand.

Always pull the propeller through by hand, opposite the direction of rotation, several times to clear the engine and "limber up" the cold, heavy oil before using the starter. This will also lessen the load on the battery if external power is not used.

Section IV Normal Procedures

BEECHCRAFT Sierra 200 B24R

Under very cold conditions, it may be necessary to preheat the engine prior to a start. Particular attention should be given to the oil cooler, engine sump and propeller hub to ensure proper preheat. A start with congealed oil in the system may produce an indication of normal pressure immediately after the start, but then the oil pressure may decrease when residual oil in the engine is pumped back with the congealed oil in the sump. If an engine heater capable of heating both the engine sump and cooler is not available, the oil should be drained while the engine is hot and stored in a warm area until the next flight.

If there is no oil pressure within the first 30 seconds of running, or if oil pressure drops after a few minutes of ground operation, shut down and check for broken oil lines, oil cooler leaks or the possibility of congealed oil.

NOTE

It is advisable to use external power for starting in cold weather.

During warm-up, monitor engine temperatures closely, since it is quite possible to exceed the cylinder head temperature limit in trying to bring up the oil temperature.

Exercise the propeller several times to remove cold oil from the pitch change mechanism. The propeller should be cycled occasionally in flight.

During letdown and landing, give special attention to engine temperatures, since the engine will have a tendency toward overcooling.

ICING CONDITIONS

Flight in Known Icing Conditions Prohibited.

ENGINE BREAK-IN INFORMATION

See Systems Description section

SECTION V

PERFORMANCE

TABLE OF CONTENTS

SUBJECT

PAGE

	Introduction to Performance and	
	Flight Planning	5-3
	Comments Pertinent to the Use of	
	Performance Graphs	5-8
	Airspeed Calibration - Normal System	5-9
	Airspeed Calibration - Alternate System	5-10
	Altimeter Correction - Normal System	5-11
	Altimeter Correction - Alternate System	5-12
	Power Off Stall Speeds	5-13
	Wind Components	5-14
	Normal Take-Off Distance - Hard Surface	5-15
	Normal Take-Off Distance - Grass Surface	5-16
1	Normal Climb	5-17
	Cruise Power Settings	
	75% MCP (Or Full Throttle @ 2700 rpm)	5-18
	65% MCP (Or Full Throttle @ 2400 rpm)	5-19
	55% MCP (Or Full Throttle @ 2300 rpm)	5-20
/	Range	5-21
	Endurance	5-22
	Normal Landing Distance - Hard Surface	5-23
	Normal Landing Distance - Grass Surface	5-24

BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

INTRODUCTION TO PERFORMANCE AND FLIGHT PLANNING

All airspeeds quoted in this section are indicated airspeeds (IAS) except as noted and assume zero instrument error.

The graphs and tables in this section present performance information for flight planning at various parameters of weight, power, altitude and temperature. Examples have been presented on some performance charts. Calculations for flight time, block speed and fuel required for a sample VFR trip from Denver to Wichita are detailed below. All examples and calculations assume the following conditions:

CONDITIONS

At Denver:

Outside Air Temperature 15	°C (59°F)
Field Elevation	5330 ft
Altimeter Setting 29.	60 in. Hg
Wind 270°	at 10 kts
Runway 26L length	10,010 ft

Route of Trip

*DEN-V4-GLD-V132-HUT-V73-ICT

For VFR Cruise at 9,500 feet

)	ROUTE SEGMENT	MAGNETIC COURSE	DIST NM	WIND 9500 FEET DIR/KTS	OAT 9500 FEET °C	ALT SETTING IN.HG
	DEN-TXC	090°	72	010/30	-5	29.60
	TXC-GLD	092°	73	010/30	-5	29.60
	GLD-HUT	102°	194	220/10	0	29.56
	HUT-ICT	116°	28	220/10	9	29.56

*REFERENCE: Enroute Low Altitude Chart L-6

At	Wic	hita:

Outside Air Temperature	25°C (77°F)
Field Elevation	1332 ft
Altimeter Setting	29.56 in. Hg
Wind	. 180° at 10 kts
Runway 19 Length	7301 ft

To determine pressure altitude at origin and destination airports, add 100 feet to field elevation for each .1 in. Hg below 29.92, and subtract 100 feet from field elevation for each .1 in. Hg above 29.92.

Pressure Altitude at DEN:

29.92 - 29.60 = .32 in. Hg

The pressure altitude at DEN is 320 feet above the field elevation.

5330 + 320 = 5650 ft

Pressure Altitude at ICT:

29.92 - 29.56 = .36 in. Hg

The pressure altitude at ICT is 360 feet above the field elevation.

1332 + 360 = 1692 ft

NOTE

For flight planning, the difference between cruise altitude and cruise pressure altitude has been ignored.

Enter the Cruise Power Settings table for 65 percent maximum continuous power (or full throttle) and 2400 RPM at 9000 ft, 10,000 ft, ISA and ISA + 20° C.

				TEMPE	RATURE		
\bigcirc			ISA		15	6A + 20°	С
0	ALTI- TUDE FEET	MAN. PRESS. IN. HG	FUEL FLOW GPH	TAS KNOTS	MAN. PRESS. IN. HG	FUEL FLOW GPH	TAS KNOTS
	9000	20.8	9.0	124	21.6	9.0	124
	10000	20.1	8.7	121	20.8	8.8	123

Interpolate for 9,500 feet and the temperature for the appropriate route segment. Results of the interpolations are:

	ROUTE SEGMENT	MAN. PRESS. IN. HG	FUEL FLOW GPH	TAS KNOTS
	DEN-TXC	20.6	8.9	123
	TXC-GLD	20.6	8.9	123
\bigcirc	GLD-HUT	20.5	8.8	122
	HUT-ICT	21.0	8.9	123

NOTE

The above are exact values for the assumed conditions.

BEECHCRAFT Sierra 200 B24R

Time and fuel used were calculated as follows:

Time = Distance Ground Speed

Fuel Used = (Time) (Fuel Flow)

Results are:

ROUTE SEGMENT	DISTANCE	EST GROUND SPEED KNOTS	TIME AT CRUISE ALTITUDE HRS: MIN	FUEL USED FOR CRUISE GAL
DEN-TXC	72	120	0:36	5.3
TXC-GLD	73	120	0:37	5.4
GLD-HUT	194	127	1:32	13.4
HUT-ICT	28	125	0:13	2.0

TIME - FUEL - DISTANCE

ITEM	TIME HRS: MINS	FUEL GAL	DISTANCE NM
Start, Runup, Taxi and Take- off acceleration	0:00	1.3	0
Cruise	2:58	26.1	367
Total	2:58	27.4	367

Section V Performance

Total Flight Time: 2 hours, 58 minutes

Block Speed: 367 NM ÷ 2 hours, 58 minutes = 124 knots

Reserve Fuel (45 minutes at 55 percent maximum continuous power)

Enter the Cruise Power Settings table for 55 percent MCP (or full throttle) @ 2300 RPM. The fuel flow for 55 percent MCP is 8 gallons per hour.

Reserve fuel = (45 min) (8 GPH) = 6 gallons

Total Fuel = 27.4 + 6.0 = 33.4 gallons

The estimated landing weight is determined by subtracting the fuel required for the trip from the ramp weight:

Assumed ramp weight = 2758 lbs

Estimated fuel from DEN to ICT = (27.4 gal) (6 lbs/gal) = 164 lbs

Estimated landing weight = 2758 -164 = 2594 lbs

Examples have been provided on the performance graphs. The above conditions have been used throughout. Rate of climb was determined for the initial cruise altitude conditions.

COMMENTS PERTINENT TO THE USE OF PERFORMANCE GRAPHS

- 1. Indicated airspeeds (IAS) were obtained by using the AIRSPEED CALIBRATION NORMAL SYSTEM Table.
- The associated conditions define the specific conditions from which performance parameters have been determined. They are not intended to be used as instructions, however, performance values determined from charts can only be achieved if specified conditions exist.
- The full amount of usable fuel is available for all approved flight conditions.
- Engine and component cooling has been demonstrated for temperatures up to 100°F at sea level with a 3.57°F per 1000 ft lapse rate. (ISA + 41°F)

																	_		_				_		_	_
		NWO	MPH	56	62	68	75	81	85	92	98	103	108													
STEM	RATED PEED	FLAPS	KNOTS	48	54	59	65	70	74	80	85	89	94													
N - NORMAL SYS	CALIBI	S UP	MPH	59	63	69	75	81	86	93	66	105	110	116	122	128	133	139	145	152	157	163	169	175	180	186
EED CALIBRATIC		FLAP	KNOTS	51	55	60	65	70	75	81	86	91	96	101	106	111	116	121	126	132	137	142	147	152	157	162
AIRSPE	TED		MPH	58	63	69	75	81	86	92	98	104	109	115	121	127	132	138	144	150	155	161	167	173	178	184
	INDIC/ AIRSP		KNOTS	50	55	60	65	70	75	80	85	06	95	100	105	110	115	120	125	130	135	140	145	150	155	160
	L	1			-			-			_	-	-	-				-	-				-	-	-	-

February 1980

5-9

Section V Performance

BEECHCRAFT Sierra 200 B24R

AIRSPEED CALIBRATION - ALTERNATE SYSTEM

IAS (MPH)	FLAPS UP IAS (MPH)	FLAPS DOWN IAS (MPH)
70		65
80	74	73
90	83	84
100	93	95
110	104	107
120	114	
130	124	
140	134	
150	144	
160	154	
170	164	
180	174	

(DOES NOT VARY WITH STORM WINDOW POSITION)

Section V Performance

		PS DOWN	10000 FT			-13	Ģ	-11	-14	-10	ę	φ	-15	-28							
STEM	DRRECTION TO D ~ FEET	FLA	SL			6-	-7	ŵ	-11	-7	ې	-6	-12	-20							
2TION - NORMAL SY	ALTIMETER C	-APS UP	10000 FT					-9	ы.	0	2	2	0	<i>L-</i>	ē.	-11	D D	9	-9		
METER CORREC		Ĩ	SL					ې	ကု	0	-	2	0	9-	<i>L-</i>	6-	ى ك	4	4-		
ALTI	ATED EED		MPH	58	63	69	75	81	86	92	98	104	109	115	121	127	132	133	144		
	INDIC/ AIRSP		KNOTS	50	55	60	65	70	75	80	85	06	95	100	105	110	115	120	125		

BEECHCRAFT Sierra 200 B24R

ALTIMETER CORRECTION - ALTERNATE SYSTEM

	STORM WINDOW POS	ITION)
IAS (MPH)	FLAPS UP (FEET)	FLAPS DOWN (FEET)
70	-37	-39
80	-45	-46
90	-50	-46
100	-54	-38
110	-58	-37
120	-62	
130	-65	
140	-68	
150	-72	
160	-76	
170	-80	

(DOES NOT VARY WITH STORM WINDOW POSITION)

Section V Performance

POWER OFF STALL SPEEDS

(WEIGHT 2750 LBS)

Maximum altitude loss during a normal stall recovery is approximately 300 ft.

	ANGLE	OF BANK						
LEVEL	30°	45°	60°					
	FLAPS-UI	P, GEAR-UP						
74 mph 64 kts	79 mph 69 kts	87 mph 76 kts	103 mph 90 kts					
	FLAPS 15°,	GEAR DOWN	I					
68 mph 59 kts	73 mph 63 kts	81 mph 70 kts	EAR-UP 37 mph 76 kts AR DOWN 31 mph 70 kts 96 mph 83 kts AR DOWN					
	FLAPS 35°,	GEAR DOWN	I					
63 mph 55 kts	68 mph 59 kts	75 mph 65 kts	89 mph 77 kts					

BEECHCRAFT Sierra 200 B24R

WIND COMPONENTS

Demonstrated Crosswind Component is 17 kts

EXAMPLE

WIND SPEED ANGLE BETWEEN WIND DIRECTION AND FLIGHT PATH	20 KTS 50°	-
HEADWIND COMPONENT CROSSWIND COMPONENT	13 KTS 15 KTS	

CROSSWIND COMPONENTS \sim KNOTS

BEECHC

Sierra 20

EXAMPLE:

5	
	c
¢	
đ	1
5	1
۵	2
ž	Ż
ē	
ĉ	
2	2
5	2
ž	-
5	5
2	2
¢	J
ć	
ÿ	'n
6	1
5	ť

February 1980

POWER	2700 RPM, FULL THROTTLE
MIXTURE	LEAN TO FIELD ELEVATION
FLAPS	150
GEAR	RETRACTED, AFTER LIFT-OFF
RUNWAY	PAVED, LEVEL, DRY SURFACE
WEIGHT	2750 LBS
TAKE-OFF SPEEDS	LIFT-OFF 62 KTS/71 MPH IAS
	50 FT 65 KTS /75 MPH IAS

	z
	5
	8
	8
	ř
	H
	Ă
	11
2	CC.
μ.	0
-	LL
2	

- 3 WHERE BEEN D AFTER

MIND		SEA LE	VEL		2000 FT			4000 FT			6000	FT	_	8000 FT	
MPONENT DOWN RUNWAY KNOTS	0AT °F °(GROUN ROLL	TOTAL VD OVER 50 FT OBSTACLE FEET	OAT oF oC	GROUND ROLL FEET	TOTAL OVER 50 FT OBSTACLE FEET	0AT 0F °C	GROUND ROLL FEET	TOTAL OVER 50 FT OBSTACLE FEET	0A °F '	GROUI T ROLI	TOTAL VD OVER 50 F OBSTACLE FEET	T 0AT 0F 0C	GROUND ROLL FEET	TOTAL OVER 50 FT OBSTACLE FEET
0	20 40 60 1 80 2 100 3	7 1000 4 1080 17 1261 18 1356	3 1544 7 1674 4 1812 5 1957 3 2108	20 7 40 4 60 16 80 27 100 38	1172 1269 1370 1474 1590	1837 1996 2166 2346 2559	20 7 40 4 60 16 80 27 100 38	1374 1485 1601 1721 1845	2214 2416 2641 2889 3163	20 40 80 100	7 1614 4 1744 16 1879 27 2017 38 2160	2736 3018 3349 3727 4178	20 40 60 1 80 2 100 3	7 1905 4 2056 6 2212 7 2372 8 2538	3546 4026 4634
15	20 40 80 1 100 3	7 78 4 85 16 92/ 77 100 18 1080	1 1258 1370 1489 1615 0 1747	20 7 40 4 60 16 80 27 100 38	922 1003 11088 1176 1176	1510 1648 1797 1955 2127	20 7 40 4 60 16 80 27 100 38	7 1090 4 1185 1 1283 1 1283 1 1491	1837 2015 2213 2432 2675	20 40 80 100	7 1293 4 1403 16 1518 27 1637 38 1760	2287 2544 2838 3176 3580	20 20 60 1 80 2 100 3	7 1539 4 1669 6 1803 7 1941 8 2085	3011 3440 3986
œ	20 56 10 20 20 20 20 20 20 20 20 20 20 20 20 20	7 58 4 64 16 70 77 76 88 830	5 997 2 1093 2 1194 5 11302 1 1416	20 1 40 4 60 16 80 27 100 38	766 1766 1836 909 985	1211 1330 1457 1594 1744	20 7 40 4 60 16 80 27 100 38	837 916 997 1083 1172	1491 1645 1817 2008 2222	20 40 80 100	7 1004 4 1097 16 1194 27 1294 38 1398	1879 2105 2363 2662 3020	20 80 100 2 100 3 2	7 1209 4 1319 6 1432 7 1551 8 1673	2512 2892 3377

Section V Performance

2000 FT 0 KTS 16⁰C

PRESSURE ALT WIND COMP EXAMPLE:

1738 FT 2579 FT

GROUND ROLL TOTAL OVER 50 FT OBSTACLE

DAT

RATE OF CLIMB IS BASED ON OPERATION AT TAKE OFF POWER, WITH GEAR DOWN

~

BEEN DELETED, CLIMB PERFORMANCE AFTER LIFT-OFF IS LESS THAN 150 FPM

3. WHERE TOTAL DISTANCE VALUE HAS

AND AT TAKE OFF SPEED.

1. FOR EACH 100 POUNDS BELOW 2750 LBS

NOTES.

REDUCE TABULATED DISTANCE BY 7%

AND TAKE OFF SPEED BY 1 MPH

BEECHCRAFT Sierra 200 B24R

QN		S	EA LEVE	L			2000 FT			4	000 F T			-	14 000S			8000 F	1
ONENT DWN VWAY VOTS	oA P	°C 6	ROUND ROLL FEET	TOTAL OVER 50 FT OBSTACLE FEET	04 0F	°c 9	ROUND ROLL FEET	TOTAL OVER 50 FT OBSTACLE FEET	0A P	GR C F	T 110	TOTAL OVER 50 FT OBSTACLE FEET	0. P	0°C 0	ROUND	TOTAL OVER 50 FT OBSTACLE FEET	0AT 0F 0	GROUNI ROLL	TOTAL D OVER 50 F OBSTACLE FEET
	20	~	1237	1808	20	~	1466	2169	20	2	1746	2636	20	~	2090	3267	20	7 2521	4246
	9	4 9	1349	1969	40	4 9	1598	2367	40	4	1903	2887	99	4	2278	3621	40	4 2747	4811
0		22	1607	2321	000	22	1884	2/07	00	01	1007	3471	8 8	10	24/52	4021	09	6 298.	5516
	100	88	1722	2512	100	38	2036	3050	100	38	2421	3807	100	38	2896	5012	000	8 3492	
	20	1	963	1466	20	1	1153	1775	20	~	1386	2176	20	~	1674	2724	20	7 2036	3583
	40	4	1056	1604	40	4	1263	1946	40	4	1518	2395	40	4	1833	3035	40	4 2229	4085
15	99	16	1155	1751	99	16	1380	2129	60	16	1656	2638	60	16	2000	3388	60	6 2432	4713
	80	27	1259	1907	80	27	1503	2325	80	27	1803	2906	80	27	2176	3790	80	7 2644	
	100	88	1368	2072	100	8	1632	2539	100	38	1956	3202	100	89	2360	4267	100	8 2869	
	20	1	721	1156	20	1	874	1416	20	1	1064	1756	20	1	1300	2225	20	7 1600	2969
	40	•7	197	1272	40	47	965	1561	40	47	1173	1943	40	4	1432	2495	40	4 1761	3409
30	8	16	877	1397	8	16	1061	1717	60	16	1288	2153	99	16	1572	2802	09	6 1932	3963
	80	27	962	1529	80	27	1162	1886	80	27	1409	2385	80	27	1720	3154	80	7 2112	
	100	8	1052	1670	100	8	1269	2069	100	四	1538	2642	100	8	1875	3574	100	CO5C 8	

NORMAL TAKE-OFF DISTANCE - GRASS SURFACE

ASSOCIATED CONDITIONS

POWER	2700 RPM, FULL THROTTLE
MIXTURE	LEAN TO FIELD ELEVATION
FLAPS	15 ⁰
GEAR	RETRACTED AFTER LIFT-OFF
RUNWAY	GRASS, LEVEL, DRY SURFACE
WEIGHT	2750 LBS
TAKE-OFF SPEEDS	LIFT OFF 62 KTS /71 MPH IAS
	50 FT 65 KTS/75 MPH IAS

February 1980

POWER FLAPS GEAR

ASSOCIATED CONDITIONS:

FULL THROTTLE UP UP

			2600					2400		
80 100	20	40	60	80	100	20	40	60	80	100
27	-	4	16	27	38	2	4	16	27	38
846 804	1101	1048	666	953	606	1272	1215	1163	1114	1066
			79/91					77/89		
100	20	40	99	80	100	20	40	99	80	100
27	1	4	16	27	38	L	4	16	27	38
536	814	167	720	674	630	966	916	865	817	177

Sierra 200 B24R 2750 POUNDS 4000 FT 16°C 80 KTS/92 MPH 622 FT/MIN

WEIGHT PRESSURE ALT OAT CLIMB SPEED RATE OF CLIMB

EXAMPLE:

NORMAL CLIMB

BEECHCRAFT

		03	SEA LEVEL			4000 FEE1			8000 FEE1	_		12000 FEE	F
WEIGHT	0°F	AT 0C	R/C FT/MIN	CLIMB SPEED KTS/MPH	0AT ^{0F 0} C	R/C FT/MIN	CLIMB SPEED KTS/MPH	0AT °F °C	R/C FT/MIN	CLIMB SPEED KTS/MPH	0AT 0F ⁰ C	R/C FT/MIN	CLIMB SPEED KTS/MPH
	20	-	988		20	7 713		0 18	3 494		0 18	225	
	40	4	937		40	4 668		20	1 447		20 7	178	
2750	60	16	891	80/92	60 1	6 622	80/92	40	1 403	80/92	40 4	131	80/92
	80	27	846		80 2	7 578		60 16	360		60 16	88	
	100	38	804		100 3	8 536		80 23	1 317		80 27	47	
	20	1	1101		20	7 814		0 18	3 586		0 .18	306	
	40	4	1048		40	4 767		20	7 537		20 7	258	
2600	60	16	666	79/91	60 1	5 720	79/91	40	1 491	79/91	40 4	209	79/91
	80	27	953		80 2	7 674		60 10	5 447		60 16	165	
	100	38	606		100 3	8 630		80 2	1 403		80 27	122	
	20	2	1272		20	7 966		0 18	3 723		0 18	426	
	40	4	1215		40	4 916		20	7 671		20 7	375	
2400	60	16	1163	77/89	60 1	6 865	77/89	40	4 623	77/89	40 4	324	77/89
	80	27	1114		80 2	7 817		60 1	5 576		60 16	278	
	100	38	1066		100 3	8 771		80 2	7 530		80 27	233	

Section V Performance

BEECHCRAFT Sierra 200 B24R

	79% Wr					
NE FLUEL TAS ENGINE MAN FLUEL TAS A INHG PH GPH XTA SPEED PRESS FLUEN TAS A INHG PH GPH XTA SPEED PRESS FLUEN TAS 0 244 G10 102 124 103 33 2500 246 610 102 129 14 0 242 610 102 127 146 33 2500 246 610 102 139 147 14 0 243 610 102 129 149 27 2600 246 610 102 131 11 14 14 14 143 144 144 144			20°C)	A .36ºF (.20ºC)	ISA :36ºF (:20ºC)	ISA :36ºF (:20ºC)
A IN HG PPH GFH KTS MFH FFH GFH KTS MFG MFG <th>DAT</th> <th>TAS</th> <th>FUEL FLOW TAS DAT</th> <th>MAN. FUEL PRESS FLOW TAS 0AT</th> <th>ENGINE MAN. FUEL SPEED PRESS FLOW TAS OAT</th> <th>AT SPEED PRESS FLOW TAS 0AT</th>	DAT	TAS	FUEL FLOW TAS DAT	MAN. FUEL PRESS FLOW TAS 0AT	ENGINE MAN. FUEL SPEED PRESS FLOW TAS OAT	AT SPEED PRESS FLOW TAS 0AT
7 74 610 102 124 102 124 102 125 144 91 33 2500 248 610 102 129 13 0 242 610 102 125 144 91 33 2500 248 610 102 129 13 0 232 610 102 125 146 88 31 2500 246 610 102 131 11 0 233 610 102 129 148 81 27 2500 244 610 102 131 11 11 11 12 132 131	Do Jo He	H KTS MPH OF OC	PPH GPH KTS MPH OF OC	IN HG PPH GPH KTS MPH OF OC	RPM IN HG PPH GPH KTS MPH OF 0C	OC RPM INHG PPH GPH KTS MPH OF OC
0 242 610 102 135 144 91 33 2500 248 610 102 139 13 0 730 610 102 173 145 88 31 2500 246 610 102 131 13 0 733 610 102 139 147 2500 246 610 102 131 131 0 2334 610 102 130 143 2500 240 131 131 131 131 131 131 131 131 131 131 132 1	65 0.	2 122 140 59 15	61.0 10.2 122 140 59 15	23.8 61.0 10.2 122 140 59 15	2500 23.8 61.0 10.2 122 140 59 15	5 2500 23.8 61.0 10.2 122 140 59 15
0 240 610 102 173 146 88 31 2500 246 610 102 131 0 238 610 102 128 147 2500 244 610 102 131 150 0 2354 610 102 138 843 29 2500 244 610 102 131 150 0 2354 610 102 130 143 252 25000 240 610 102 131 151 0 2354 610 102 131 150 243 610 102 131 151 151 151 151 132 152 153 <td< td=""><td>1 55 13</td><td>2 123 141 55 13</td><td>61.0 10.2 123 141 55 13</td><td>23.6 61.0 10.2 123 141 55 13</td><td>2500 23.6 61.0 10.2 123 141 55 13</td><td>7 2500 23.6 61.0 10.2 123 141 55 13</td></td<>	1 55 13	2 123 141 55 13	61.0 10.2 123 141 55 13	23.6 61.0 10.2 123 141 55 13	2500 23.6 61.0 10.2 123 141 55 13	7 2500 23.6 61.0 10.2 123 141 55 13
0 738 610 102 128 147 84 29 2500 24.4 610 102 11 150 0 23.6 610 102 129 148 81 27 2500 24.5 610 102 113 151 0 23.4 610 102 130 149 77 250 24.0 610 102 131 151 0 23.5 610 102 131 150 74 250 610 102 132 153 0 22.5 610 102 131 151 72 2600 22.5 610 102 132 153 0 22.6 610 102 131 151 70 212 123 143 0 22.6 610 102 131 151 61 220 263 61 131 160 0 215 561	4 52 17	2 125 144 52 11	61.0 10.2 125 144 52 11	23.4 61.0 10.2 125 144 52 11	2500 23.4 61.0 10.2 125 144 52 11	9 2500 23.4 61.0 10.2 125 144 52 11
0 23.6 61.0 10.7 129 148 81 27 5500 24.2 61.0 10.7 131 131 0 23.4 61.0 10.2 130 149 77 25 2500 24.0 61.0 10.2 132 153 0 22.5 61.0 10.2 131 151 23 2600 22.9 61.0 10.2 132 153 0 22.0 61.0 10.2 131 151 2600 22.2 58.3 9.7 137 152 0 21.5 58.6 9.1 151 61 22.2 58.3 9.7 131 190 0 21.5 59.6 9.1 151 61 27 56.6 9.7 132 147 0 21.6 10.7 131 151 61 27 56.6 31.7 56.7 147 149 0 21.6 50.7 <td>4 48 9</td> <td>2 125 144 48 9</td> <td>61.0 10.2 125 144 48 9</td> <td>23.2 61.0 10.2 125 144 48 9</td> <td>2500 23.2 61.0 10.2 125 144 48 9</td> <td>11 2500 23.2 61.0 10.2 125 144 48 9</td>	4 48 9	2 125 144 48 9	61.0 10.2 125 144 48 9	23.2 61.0 10.2 125 144 48 9	2500 23.2 61.0 10.2 125 144 48 9	11 2500 23.2 61.0 10.2 125 144 48 9
0 23.4 61.0 10.2 130 149 77 25 2500 210 10.2 132 152 0 225 61.0 10.2 131 150 74 23 2600 279 61.0 10.2 132 153 0 22.0 61.0 10.2 131 151 70 21 2600 27.9 563.0 9.0 132 153 0 21.6 59.0 131 151 67 21 2600 21.5 58.3 9.7 131 160 0 21.6 59.1 131 151 67 22.5 58.3 9.7 131 160 0 21.6 9.7 130 141 63 17 2600 20.5 56.5 9.4 132 143 0 20.1 56.1 126 143 56.0 20.1 56.5 9.4 132 143 0	15 45 7	2 126 145 45 7	61.0 10.2 126 145 45 2	23.0 61.0 10.2 126 145 45 2	2500 23.0 61.0 10.2 126 145 45 7	13 2500 23.0 61.0 10.2 126 145 45 2
0 225 610 102 131 150 74 23 2600 229 610 102 132 153 0 220 610 102 131 151 70 21 2600 222 59.6 99 132 153 0 21.5 59.6 93 131 151 67 13 2600 21.5 59.6 93 132 150 0 20.8 58.6 93 131 151 2600 21.5 59.6 93 132 145 0 20.8 58.1 130 149 63 13 2600 20.1 56.5 9.4 129 149 0 20.1 56.1 130 149 56 13 140 140 0 20.1 56.1 143 2600 20.1 56.4 120 143 0 20.1 56.1 143 56.0 20.	6 41 5	2 127 146 41 5	61.0 10.2 127 146 41 5	22.8 61.0 10.2 127 146 41 5	2500 22.8 61.0 10.2 127 146 41 5	15 2500 22.8 61.0 10.2 127 146 41 5
0 22.0 61.0 10.2 131 151 70 21 2600 22.2 59.6 9.9 132 152 0 21.5 59.6 9.9 131 151 67 19 2600 21.5 58.3 9.7 131 150 0 20.8 58.0 9.7 130 149 63 17 2600 21.5 58.3 9.7 121 150 0 20.8 58.0 9.7 130 149 63 17 2600 20.8 56.5 9.4 129 149 0 20.1 56.1 9.4 128 149 56.6 9.4 129 146 0 20.1 56.1 9.4 128 149 56.6 9.4 129 146 0 19.2 54.1 56.0 20.1 56.6 9.4 129 146 14.1 56.1 56.1 56.1 56.1 <td>7 38 3</td> <td>2 128 147 38 3</td> <td>61.0 10.2 128 147 38 3</td> <td>22.0 61.0 10.2 128 147 38 3</td> <td>2600 22.0 61.0 10.2 128 147 38 3</td> <td>17 2600 22.0 61.0 10.2 128 147 38 3</td>	7 38 3	2 128 147 38 3	61.0 10.2 128 147 38 3	22.0 61.0 10.2 128 147 38 3	2600 22.0 61.0 10.2 128 147 38 3	17 2600 22.0 61.0 10.2 128 147 38 3
0 21.5 59.6 99 131 151 67 19 2600 21.5 58.3 9.7 131 150 0 20.8 58.0 9.7 130 149 63 17 2600 20.8 56.5 9.4 129 149 0 20.1 56.1 9.4 128 147 5600 20.8 56.5 9.4 129 143 0 20.1 56.1 9.4 128 147 5600 20.1 54.6 9.1 127 145 0 20.1 56.1 9.4 128 147 5600 20.1 54.6 9.1 127 145 0 19.2 54.1 19.6 15.2 54.0 19.7 51.7 54 143 0 18.7 53.1 8.9 123 141 2500 18.7 51.7 84 143 141	1 34 1	2 130 149 34 1	61.0 10.2 130 149 34 1	21.8 61.0 10.2 130 149 34 1	2600 218 61.0 10.2 130 149 34 1	.19 2600 21.8 61.0 10.2 130 149 34 1
0 208 58.0 9.7 130 149 63 17 2600 208 56.5 9.4 129 149 0 20.1 56.1 9.4 128 147 59 15 2600 20.1 54.6 9.1 129 145 0 20.1 56.1 9.4 128 147 59 15 2600 20.1 54.6 9.1 127 145 0 19.2 54.1 126 145 56 13 26500 19.7 54.8 147 147 0 19.2 54.1 126 143 561 13 264 19.7 147 0 145 53 142 52 11 2600 167 51.7 84 143	0 31 .1	2 131 150 31 .1	61.0 10.2 131 150 31 1	21.3 61.0 10.2 131 150 31 3	2600 21.3 61.0 10.2 131 150 31 .1	.21 2600 21.3 61.0 10.2 131 150 31 1
0 20.1 56.1 9.4 128 147 59 15 2600 20.1 54.6 9.1 127 146 0 19.2 54.6 9.1 126 145 56 13 2600 19.7 53.1 89 143 145 143 143 143 143 2600 19.7 53.1 89 124 143 0 18.7 53.1 29 12 142 52 11 2600 19.7 51.7 86 143	9 27 3	0 130 149 27 3	59.8 10.0 130 149 27 3	20.8 59.8 10.0 130 149 27 3	2600 20.8 59.8 10.0 130 149 27 3	-23 2600 20.8 59.8 10.0 130 149 27 3
0 19.2 54.6 9.1 126 145 56 13 2650 19.2 53.1 89 124 143 0 18.7 53.1 8.9 123 142 52 11 2600 18.7 51.7 8.6 123 141	7 23 5	7 128 147 23 5	57.9 9.7 128 147 23 5	20.1 57.9 9.7 128 147 23 5	2600 20.1 57.9 9.7 128 147 23 5	-25 2600 20.1 57.9 9.7 128 147 23 5
0 18.7 53.1 8.9 123 142 52 11 2600 18.7 51.7 8.6 123 141	5 20 -7	4 126 145 20 -7	56.2 9.4 126 145 20 -7	19.2 56.2 9.4 126 145 20 -7	2600 19.2 56.2 9.4 126 145 20 -7	-27 2600 19.2 56.2 9.4 126 145 20 7
	4 16 .9	1 125 144 16 .9	54.8 9.1 125 144 16 .9	18.7 54.8 9.1 125 144 16 .9	2600 18.7 54.8 9.1 125 144 16 -9	·29 2600 18.7 54.8 9.1 125 144 16 ·9

CRUISE POWER SETTINGS

5-18

Section V Performance

B SETTINGS

CRUISE POWER SETTINGS

65% MAXIMUM CONTINUOUS POWER (OR FULL THROTTLE) 2400 RPM

			IS.	A 360F (20°C	-					STAP	UDARD	DAY ((YA)					15	A +36°F	: (+20	-		
w .	OA	VT.	ENGINE	MAN. PRESS	23	JEL	TA	s	ΟA	+	ENGINE	MAN. PRESS	FU	EL	5	٩S	Ó	1	ENGINE	MAN. PRESS	35	EL	-	St
-	do	Do	RPM	DH NI	Hdd	GPH	KTS	HdW	чo	Do	RPM	DH NI	Hdd	GPH	K TS	MPH	οb	Do	RPM	IN HG	Hdd	GPH	KTS	HdW
	23	ň	2400	22.3	54.5	9.1	114	131	69	15	2400	22.8	54.5	1.6	117	134	96	35	2400	23.5	54.5	9.1	118	136
8	10	1	2400	22.0	54.5	1.6	115	132	55	13	2400	22.6	54.5	9.1	117	135	6	33	2400	23.2	54.5	9.1	119	137
8	16	6,	2400	21.8	54.5	9.1	116	133	52	1	2400	22.4	54.5	9.1	118	136	88	ιE	2400	23.0	54.5	9.1	120	138
00	12	.11	2400	21.6	54.5	9.1	117	134	48	6	2400	22.2	54.5	9.1	119	137	84	29	2400	22.8	54.5	9.1	121	139
8	a.	.13	2400	214	54.5	9.1	117	135	45	7	2400	21.9	54.5	9.1	120	138	81	27	2400	22.5	54.5	9,1	122	140
00	ŝ	-15	2400	212	54.5	1.6	118	136	1.5	ŝ	2400	21.7	54.5	9.1	121	139	11	25	2400	22.3	54.5	9.1	123	141
00	2	11	2400	21.0	54.5	1.6	1.19	137	38	m	2400	21.5	54.5	9.1	121	139	74	23	2400	22.1	54.5	9.1	124	142
8	14	-19	2400	20.8	54.5	9.1	120	138	34	-	2400	21.3	54.5	1.6	122	140	70	21	2400	21.9	54.5	9.1	124	143
00	ų	.21	2400	20.6	54.5	9.1	121	139	31	-	2400	21.0	54.5	сi бi	123	141	67	19	2400	21.6	54.2	9.0	124	143
00	6	-23	2400	20.4	54.5	9.1	122	140	27	17	2400	20.8	54.1	0.0	124	142	63	17	2400	20.8	52.7	8.8	123	141
00	-13	-25	2400	20.1	53.9	0.6	122	140	23	ŵ	2400	20.1	52.4	8.7	121	139	59	51	2400	20.1	51.0	3.5	119	137
00	-16	12.	2400	19.3	52.6	8.8	120	138	20	5	2400	19.3	51.0	8.5	118	136	56	13	2400	19.3	49.7	8,3	117	134
00	-20	-29	2400	18.6	51.0	8.5	117	135	16	Ū,	2400	18.6	49.6	8.3	116	133	52	11	2400	18.6	48.2	8.0	112	129
1					1		1.000																	

FULL THROTTLE MANFOLD PRESURE SETTINGS ARE APPROXIMATE.
 SHADED AREA REPRESURS OPERATION WITH FULL THROTTLE.
 CHUGE SPEEDS ARE PRESENTED AT AN AVERAGE WRIGHT OF 2000 LBS.

BEECHCRAFT Sierra 200 B24R

	TAS	TS MPH	124	124	10 125	10 126	10 126	10 127	11 128	11 128	11 128	12 129	12 129	11 128	
-	ج ہے	SPH K	8.0	8.0	8.0 1	8.0	8.0 1	8.0	8.0 1	8.0	8.0	8.0 1	8.0 1	1 67	7.8 1
(+200)	FLOK	PPPH 0	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	47.7	46.5
4 + 360F	MAN. PRESS	DH NI	21.6	21.3	21.1	20.9	20.7	20.5	20.3	20.1	19-9	19.7	19.5	19.2	13.6
12	NGINE	RPM	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300
	ш. н	°C	35	33	31	56	27	25	23	21	19	17	15	13	
	ΟA	4o	96	16	88	84	81	17	74	70	67	63	59	56	52
	s	MPH	122	123	124	124	125	126	126	127	127	128	128	128	128
	TA	KTS	106	107	108	108	108	109	601	110	110	111	111	111	111
(VS	л ş	GPH	8.0	8.0	8.0	8.0	8.0	8.0	8.0	0.8	8.0	8.0	8.0	8.0	7.9
AY (13	FUE	Hdd	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	47.7
DARD	MAN. PRESS	DH NI	21.1	20.8	20.6	20.4	20.2	19.9	19.7	19.5	19.3	19.1	19.0	18.9	18.6
STAN	SPEED	RPM	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300
	E	0C	15	13	1	σ	2	μn	m	-	1.	ņ	'n	1.	ē,
	ΟA	οF	69	55	52	48	45	41	38	34	31	27	23	20	16
	s	MPH	120	121	122	123	123	124	125	125	126	127	127	128	128
	TA	K TS	101	105	106	107	107	108	109	109	110	111	111	111	111
	EL	GPH	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0	8.0
-20°C)	FL	Hdd	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2	48.2
4 -360F (MAN. PRESS	DH NI	20.6	20.3	20.1	19.8	19.6	19.4	19.2	18.9	18.7	18.6	18.5	18.4	18.3
IS.	SPEED	RPM	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300	2300
	AT	0C	ż	1	ů,	11	.13	-15	-17	-19	-21	.23	-25	.27	-29
	0	чo	23	19	16	12	6	s.	2	5	ŝ	6.	.13	-16	-20
	PRESS ALT.	FEET	SL	1000	2000	3000	4000	5000	6000	7000	8000	0006	10,000	11,000	12,000

CRUISE POWER SETTINGS 55% MAXIMUM CONTINUOUS POWER 10R FULL THROTTLE

Section V Performance

RANGE

		RANG	$ m e \sim N.N$	/. (ZER(O WIND)	
PRESSURE	75% P	OWER	65 % P	OWER	55% P	OWER
altitude \sim	32	52	32	52	32	52
FEET	GAL	GAL	GAL	GAL	GAL	GAL
S.L.	302	547	316	571	327	591
1000	303	550	316	573	326	592
2000	303	552	316	575	326	593
3000	303	554	316	578	325	594
4000	303	556	316	579	324	595
5000	304	558	316	581	323	595
6000	304	560	315	582	322	595
7000	303	562	314	583	321	595
8000			314	585	319	595
9000					317	594
10000					315	593
11000					310	588
12000						

ASSOCIATED CONDITIONS:

EXAMPLE:

STANDAR	RD DAY	ALTITUDE	7000 FT
WEIGHT	2758 POUNDS BEFORE	POWER	65%
FUEL	100 OCTANE	LOADING	GALLONS
	AVIATION GASOLINE	RANGE	583 NM

FUEL

DENSITY 6.0 POUNDS/GALLON

 RANGE INCLUDES START, TAXI, CLIMB AND 45 MINUTES RESERVE FUEL AT 55% POWER.

BEECHCRAFT Sierra 200 B24R

EN	DI	JR	AI	NC	CE
----	----	----	----	----	----

		E	NDURA	NCE \sim I	HRS		
PRESSURE	75% P	OWER	65% P	OWER	55% P	OWER	1
altitude \sim	32	52	32	52	32	52	1.
FEET	GAL	GAL	GAL	GAL	GAL	GAL	
S.L.	2.4	4.2	2.7	4.9	3.1	5.6	
1000	2.4	4.4	2.7	4.9	3.1	5.5	
2000	2.4	4.4	2.7	4.9	3.0	5.5	(
3000	2.4	4.4	2.7	4.9	3.0	5.5	
4000	2.4	4.4	2.7	4.9	3.0	5.5	
5000	2.4	4.3	2.6	4.8	3.0	5.5	
6000	2.4	4.3	2.6	4.8	2.9	5.4	
7000	2.4	4.3	2.6	4.8	2.9	5.4	
8000			2.6	4.8	2.9	5.4	
9000					2.9	5.4	
10000					2.8	5.3	
11000					2.8	5.3	
12000							(

ASSOCIATED CONDITIONS:

STANDARD DAY

WEIGHT	2758 POUNDS BEFORE
	ENGINE START
FUEL	100 GCTANE
	AVIATION GASOLINE
FUEL	
DENSITY	6.0 POUNDS/GALLON

EXAMPLE:

ALTITUDE 7000 FT POWER 65% FUEL 52 LOADING GALLONS ENDURANCE 4.8 HOURS

	ú	
2	5	2
	6	5
- (Ξ	5
1	-	
1	۲	•
		:
	4	a
4	2	
1	~	ŝ
	۲	ć
	4	,
	~	v
	۲	٩.
	٠	4
	٠	•
	d	t.
1	-	÷
	L	۶
1	1	5
1		ς.
1	5	5
1	1	ĩ
	٩	٠

OFF	35°	DOWN	PAVED, LEVEL, DRY SURF #	2750 POUNDS	74 KTS/85 MPH IAS
POWER	FLAPS	GEAR	RUNWAY	WEIGHT	APPROACH SPEED

NOTES

- GROUND ROLL IS APPROXIMATELY 54% OF TOTAL DISTANCE OVER 50 FT. OBSTACLE. REDUCE TABULATED DISTANCE BY 5% AND APPROACH SPEED BY 1 MPH. FOR EACH 100 LBS. BELOW 2750 LBS.
- TOTAL OVER 50 FT OBSTACLE PRESSURE ALT WIND COMP DAT

BEECHCRAFT
Sierra 200 B24R

2000 FT 15 KTS 16°C 1331 FT

EXAMPLE

Section V Performance

MIND	SEA	LEVEL	200	00 FT	400	20 FT	600	00 F T	80	N00 FT
COMPONENT DOWN RUNWAY		TOTAL OVER 50 FT								
KNOTS	0AT °F °C	OBSTACLE FEET	0AT °F °C	OBSTACLE FEET	0AT °F °C	0BSTACLE FEET	0AT °F °C	OBSTACLE FEET	0AT 0F 0C	OBSTACLE FEET
	20 7	1303	20 -7	1510	20 -7	1644	20 .7	1802	20 7	1985
	40 4	1428	40 4	1582	40 4	1728	40 4	1897	40 4	2097
0	60 16	1523	60 16	1658	60 16	1815	60 16	1998	60 16	2212
	80 27	1590	80 27	1736	80 27	1903	80 27	2102	80 27	2328
	100 38	1660	100 38	1816	100 38	1996	100 38	2207	100 38	2450
	20 -7	1009	20 7	1124	20 7	1318	20 7	1487	20 7	1648
	40 4	1069	40 4	1213	40 4	1422	40 4	1573	40 4	1745
15	60 16	1137	60 16	1331	60 16	1498	60 16	1659	60 16	1847
3	80 27	1223	80 27	1430	80 27	1576	80 27	1749	80 27	1954
	100 38	1334	100 38	1499	100 38	1657	100 38	1842	100 38	2077
	20 7	789	20 7	871	20 .7	176	20 7	1116	20 7	1346
	40 4	834	40 4	923	40 4	1042	40 4	1245	40 4	1429
30	60 16	880	60 16	582	60 16	1132	60 16	1355	60 16	1518
	80 27	929	80 27	1049	80 27	1263	80 27	1433	80 27	1611
	100 28	984	100 38	11 34	30 78	1353	100 28	15.16	1001 28	1707

EXAMPLE:

BEECHCRAFT Sierra 200 B24R

235 000 2750 2750 74 K	N SS, LEVEL, DRY SUR POUNDS TS/35 MPH IAS	FACE	2 F 00 8 % E	A EACH JOST AND R EACH 100 LL DUCE TABULA AND APPROA	E OVER 50 FT OB ATED DISTANCE B CH SPEED BY 1 MI	ISTACLE. BSS. BHH.	S o F ō	IND COMP AT OTAL OVER 5 BSTACLE	0 FT 1860 FT
ALE	VEL	20	00 FT.	400	OFT.	600	00 FT.	800	0 FT.
	TOTAL OVER 50 FT OBSTACLE FEET	OAT PF ⁰ C	TOTAL OVER 50 FT OBSTACLE FEET	0AT 0F 0C	TOTAL OVER 50 FT QBSTACLE FEET	0AT 0F 0C	TOTAL OVER 50 FT OBSTACLE FEET	OAT 0F 0C	TOTAL OVER 50 FT OBSTACLE FEET
	1551	20 7	1111	20 7	1931	20 7	2112	20 7	2319
	1686	40 4	1860	40 4	2027	40 4	2219	40 4	2445
	16/1	60 16	1947	60 16	2126	60 16	2333	60 16	2573

SURFACE RASS C I NORMAL LANDING DISTANCE

NOTES ÷

ASSOCIATED CONDITIONS

SECTION VI

WEIGHT AND BALANCE/ EQUIPMENT LIST

TABLE OF CONTENTS

SUBJECT

PAGE

	Introduction To Weight And Balance	. 6-3
	Weighing Instructions	. 6-4
	Basic Weight And Balance Form	. 6-7
	Weight And Balance Record	. 6-9
	Weight And Balance Responsibilities	6-11
	Weight Vs Moment Limits Graph	6-12
	Computing Procedure	6-14
	Sample Weight And Balance Loading Form	6-15
	Weight And Balance Loading Form	6-16
	Useful Load Weights And Moments	
	Occupants	6-17
1	Usable Fuel	6-18
	Baggage	6-19
	Equipment List Provided For Each Air	plane

Section VI Wt and Bal/Equip List BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

INTRODUCTION TO WEIGHT AND BALANCE

The necessity for proper computation of the airplane's weight and balance cannot be overemphasized. In the basic design, it is planned that under normal loading the weight distribution of pilot, passengers, baggage, and fuel will balance the airplane for flight. Since these items are all variables, it is possible to concentrate weight in such a way as to make the airplane unsafe for flight. The factors which must be considered in the weight and balance of the airplane are the installation of equipment after the airplane has been weighed, trapped or unusable fuel, engine oil, usable fuel, pilot and passenger weights, and baggage or cargo.

In order to simplify the computation of the weight and balance, Beech Aircraft Corporation has devised a form called Basic Empty Weight and Balance. When the airplane is delivered from the factory it will first be weighed and the data recorded on this form. Provision has been made on the form for listing additions of items to be installed before the delivery or subtractions of items to be removed before delivery from the "as weighed" condition. This then represents the empty weight of the airplane.

When the airplane is first fueled, a certain amount of fuel is trapped in the fuel lines and cells which cannot be drained. Also, in some regimes of flight there are certain amounts of fuel that cannot be used. The combination of these fuel amounts is classified as unusable fuel. Also, it has been found that all operators bring the oil level near full before each flight. Thus, these items are computed along with the empty weight, giving a Basic Empty Weight as a starting point to the pilot for each flight computation.

Once the Basic Empty Weight for a given airplane has been established, the pilot is then only concerned with the

Section VI Wt and Bal/Equip List

WEIGHING INSTRUCTIONS

from the measured fuel on board)

Periodic weighing of the airplane may be required to keep the Basic Empty Weight current. All changes to the airplane affecting weight and balance are the responsibility of the airplane's operator.

variable items which will comprise his useful load. These items which are of a changing nature are: Pilot and Passengers (computed on an individual weight and the seat occupied), Baggage and/or Cargo (computed on weight and location within the airplane), and Usable Fuel (the remaining fuel after subtracting the unusable fuel

- Three jack points are provided for weighing: two on the wing front spar at Fuselage Station 129.2 and one on the aft fuselage at Fuselage Station 285.9 (tail tiedown ring).
- 2. Fuel should be drained preparatory to weighing. Tanks are drained from the regular drain ports with the airplane in static ground attitude. The unusable fuel to be added to a Basic Empty Weight is: 45.6 lbs at Fuselage Station 125.0.
- Engine oil must be at the full level or completely drained. Total engine oil when full is 15 pounds at Fuselage Station 50.
- 4. To determine airplane configuration at time of weighing, installed equipment is checked against the airplane equipment list or superseding forms. All installed equipment must be in its proper place during weighing.

BEECHCRAFT Sierra 200 B24R

- 5. At the time of weighing, the airplane must be level both longitudinally and laterally, and the landing gear must be fully extended. Longitudinally and laterally level attitude is determined with a level on the baggage compartment floor.
- 6. Measurement of the reaction arms for a wheel weighing is made using a steel measuring tape. Measurements are taken, with the airplane level on the scales, from the reference (a plumb bob dropped from the centerline of airplane at F.S. 126.438, forward screw in spar access cover, approximately 8 to 10 inches forward of centerline drain hole) to the axle centerline of the main gear and then to the nose wheel axle centerline. The main wheel axle centerline is best located by stretching a string across from one main wheel to the other. All measurements are to be taken with the tape level with the hangar floor and parallel to the fuselage centerline. The locations of the wheel reactions will be approximately at Fuselage Station 129.5 for main wheels and Fuselage Station 57.6 for the nose wheel
- 7. Jack point weighings are accomplished by placing scales at the jack points specified in step 1 above. Since the center of gravity of the airplane is forward of Fuselage Station 129.4, the tail reaction of the airplane will be in an up direction. This can be measured on regular scales by placing ballast of approximately 200 pounds on the scales to which the aft weighing point is attached by cable of adjustable length. The up reaction will then be total ballast weight minus the scale reading and is entered in the weighing form as a negative quantity.
 - Weighing should always be made in an enclosed area which is free from air currents. The scales used should be properly calibrated and certified.

		BY		MOMENT			dition			750	>>>>>
	μ	REPARED		ARM			eighed conc			50.0 125.0	2.04
D BALANCE	DAT	P Company	Signature	NET WEIGHT			tions to as we			15.0 45.6	2.51
EIGHT ANI	NO.			TARE			and subtrac	WI A			
SIC EMPTY WE	REG. N	T LOCATION	285.9	SCALE READING			for additions a	A De	in		
BAS	SER. NO.	JACK POIN FORWARD	AFT	rion CK POINTS	_	/EIGHED)	below provided		HT (DRY)	- FIIFI	
	MODEL B24R			REACI WHEEL - JA(LEFT MAIN RIGHT MAIN NOSE OR TAI	TOTAL (AS W	Space		EMPTY WEIG	ENGINE OIL	

BEECHCRAFT Sierra 200 B24R

1 11

Section VI Wt and Bal/Equip List

February 1980

BASIC EMPTY WEIGHT

NOTE

Each new airplane is delivered with a completed sample loading, basic empty weight and center of gravity, and equipment list, all pertinent to that specific airplane. It is the owner's responsibility to ensure that changes in equipment are reflected in a new weight and balance and in an addendum to the equipment list. There are many ways of doing this; it is suggested that a running tally of equipment changes and their effect on basic empty weight and c.g. is a suitable means for meeting both requirements.

The current equipment list and empty weight and c.g. information must be retained with the airplane when it changes ownership. Beech Aircraft Corporation cannot maintain this information; the current status is known only to the owner. If these papers become lost, the FAA will require that the airplane be reweighed to establish the empty weight and c.g. and that an inventory of installed equipment be conducted to create a new equipment list.

It is recommended that duplicate copies of the Basic Empty Weight and Balance sheet and the Equipment List be made and kept in an alternate location in the event the original handbook is misplaced.

		1			 	 T	 	 																
		-	G BASIC WEIGHT	<u>100</u>																				
		GE NO.	RUNNIN EMPTY	WT (LBS)																				
	PA	PA	PA	PA	PA	PA	PA	PA	PA	P/4	P4	7d	7d	P4	PA	P4	P/	NGE AOVED (-)	<u>100</u>					
\cup	RECORD		IGHT CHA +) OR REI	ARM (IN.)																				
	LANCE P	I NO.	ME ADDED (WT (LBS)																				
	HT AND BA	GISTRATION	OF ARTICLE																					
	WEIG	R	ESCRIPTION	R CHANGE																				
\bigcirc			NO.	OUT C																				
		NO.	ITEM	Z																				
		SERIAL	DATE																					

Section VI Wt and Bal/Equip List

				 	 	 	 	 \sim
	2	G BASIC WEIGHT	<u>100</u>					
	GE NO.	RUNNIN EMPTY	WT (LBS)					
	PA	NGE AOVED (-)	<u>MOM</u> 100					
ECORD		HT CHA	ARM (IN.)					
LANCE R	NO.	ADDED (WT (LBS)					
T AND BAI	SISTRATION	F ARTICLE						
WEIGH	REG	CRIPTION O	HANGE					
		DESC	OR C	 				
		NO.	OUT					
	NO.	ITEN	Z					
	SERIAL	DATE						

Section VI Wt and Bal/Equip List

WEIGHT AND BALANCE RESPONSIBILITIES

The Basic Empty Weight and Moment of the airplane at the time of delivery are shown on the airplane Basic Empty Weight and Balance form. Useful load items which may be loaded into the airplane are shown on the Useful Load Weights and Moments tables. The minimum and maximum moments are shown on the Moment Limits vs Weight table and can also be plotted on the Moment Limits vs Weight graph as visual indication that the limit is within the operational envelope. These moments correspond to the forward and aft center-of-gravity flight limits for a particular weight. The airplane must be loaded in such a manner to keep the center-of-gravity within these limits.

Section VI Wt and Bal/Equip List

BEECHCRAFT Sierra 200 B24R

Section VI Wt and Bal/Equip List

\bigcirc

MOMENT LIMITS vs WEIGHT LIMITS

	Weight	Minimum Moment 100	Maximum Moment 100	Weight	Minimum Moment 100	Maximum Moment 100	Weight	Minimum Moment 100	Maximum Moment 100
	1700	1870	2011	2100	2310	2484	2500	2775	2958
	1710	1881	2023	2110	2321	2496	2510	2788	2969
	1720	1892	2035	2120	2332	2508	2520	2801	2981
	1730	1903	2047	2130	2343	2520	2530	2814	2993
	1740	1914	2058	2140	2354	2532	2540	2828	3005
	1750	1925	2070	2150	2365	2543	2550	2841	3017
	1760	1936	2082	2160	2376	2555	2560	2854	3028
	1770	1947	2094	2170	2387	2567	2570	2867	3040
	1780	1958	2106	2180	2398	2579	2580	2880	3052
	1790	1969	2118	2190	2409	2591	2590	2894	3064
1				-					
٢.	1800	1980	2129	2200	2420	2603	2600	2907	3076
	1810	1991	2141	2210	2431	2614	2610	2920	3088
	1820	2002	2153	2220	2442	2626	2620	2933	3099
	1830	2013	2165	2230	2453	2638	2630	2947	3111
	1840	2024	2177	2240	2464	2650	2640	2960	3123
	1850	2035	2189	2250	2475	2662	2650	2973	3135
	1860	2046	2200	2260	2486	2674	2660	2987	3147
	1870	2057	2212	2270	2497	2685	2670	3000	3159
	1880	2068	2224	2280	2508	2697	2680	3013	3170
	1890	2079	2236	2290	2519	2709	2690	3027	3182
	1900	2090	2248	2300	2530	2721	2700	3040	3194
	1910	2101	2260	2310	2541	2733	2710	3054	3206
	1920	2112	2271	2320	2552	2745	2720	3067	3218
	1930	2123	2283	2330	2563	2756	2730	3081	3230
	1940	2134	2295	2340	2574	2768	2740	3094	3241
	1950	2145	2307	2350	2585	2780	2750	3108	3253
	1960	2156	2319	2360	2596	2792			
	1970	2167	2331	2370	2607	2804			
	1980	2178	2342	2380	2619	2815			
	1990	2189	2354	2390	2632	2827			
	2000	2200	2366	2400	2645	28.20			
1	2010	2211	2378	2410	2658	2851			
	2020	2222	2390	2420	2671	2863			
	2020	2222	2401	2430	2684	2875			
	2040	2244	2413	2440	2697	2887			
	2050	2255	2425	2450	2710	2898			
	2060	2255	2423	2460	2723	2910			
	2000	2200	24.57	2470	2725	2972			
	2080	2288	2461	2480	2749	2922			
	2090	2299	2472	2490	2762	2946			
	2000			2.00	2.02	2010			

The above weight and moment limits are based on the following weight and center of gravity limit data:

NORMAL CATEGORY

WEIGHT CONDITION FWD CG LIMIT AFT CG LIMIT 2750 lb (Max. Take-Off 113.0 118.3 or Landing) 110.0 118.3

COMPUTING PROCEDURE

- Record the Basic Empty Weight and Moment from the Basic Empty Weight and Balance form (or from the latest superseding form) under the Basic Empty Condition block. The moment must be divided by 100 to correspond to Useful Load Weights and Moments tables.
- 2. Record the weight and corresponding moment from the appropriate table of each of the useful load items (except fuel) to be carried in the airplane.
- 3. Total the weight column and moment column. The SUB-TOTAL is the Zero Fuel Condition.
- 4. Determine the weight and corresponding moment for the fuel loading to be used. This fuel loading includes fuel for the flight, plus that required for start, taxi, and take-off. Add the Fuel to Zero Fuel Condition to obtain the SUB-TOTAL Ramp Condition.
- 5. Subtract the fuel to be used for start, taxi, and take-off to arrive at the SUB-TOTAL Take-off Condition.
- 6. Subtract the weight and moment of the fuel in the incremental sequence in which it is to be used from the take-off weight and moment. The Zero Fuel Condition, the Take-Off Condition, and the Landing Condition moment must be within the minimum and maximum moments shown on the Moment Limit vs Weight graph for that weight. If the total moment is less than the minimum moment allowed, useful load items must be shifted aft or forward load items reduced. If the total moment allowed, useful load items reduced. If the total moment is greater than the maximum moment allowed, useful load items reduced. If the total moment is schanged, the calculations must be revised and the moments rechecked.

The following Sample Loading chart is presented to depict the sample method of computing a load. Weights used DO NOT reflect an actual airplane loading.

WEIGHT AND BALANCE LOADING FORM

MODEL B24R DATE

SERIAL NO. MC-XXX REG NO. NXXX

ITEM	WEIGHT	MOM/100
1. BASIC EMPTY CONDITION	1720	1912
2. FRONT SEAT OCCUPANTS	340	374
3. 3rd and 4th SEAT OCCUPANTS	340	482
4. 5th and 6th SEAT OCCUPANTS	130	222
5. BAGGAGE	-	2
6. CARGO		-
7. SUB TOTAL ZERO FUEL CONDITION	2530	2990
8. FUEL LOADING (32 GAL)	192	225
9. SUB TOTAL RAMP CONDITION	2722	3215
10. *LESS FUEL FOR START, TAXI, AND TAKE-OFF	-8	-9
11. SUB TOTAL TAKE-OFF CONDITION	2714	3206
12. LESS FUEL TO DESTINATION (25 GAL)	-150	-176
13. LANDING CONDITION	2564	3030

*Fuel for start, taxi and take-off is normally 8 lbs at an average mom/100 of 9.

Section VI Wt and Bal/Equip List

BEECHCRAFT Sierra 200 B24R

MODEL B24R	DATE	18194	
SERIAL NO. MC-322	REG NO	6970R NXXX	

ITEM	WEIGHT	MOM/100
1. BASIC EMPTY CONDITION	1751	1957
2. FRONT SEAT OCCUPANTS		
3. 3rd and 4th SEAT OCCUPANTS		
 5th and 6th SEAT OCCUPANTS 		
5. BAGGAGE		
6. CARGO		
7. SUB TOTAL ZERO FUEL CONDITION		
8. FUEL LOADING (GAL)		
9. SUB TOTAL RAMP CONDITION		
10. *LESS FUEL FOR START, TAXI, AND TAKE-OFF	< 87	$\langle 9 \rangle$
11. SUB TOTAL TAKE-OFF CONDITION		
12. LESS FUEL TO DESTINATION (GAL)		
13. LANDING CONDITION		_

*Fuel for start, taxi and take-off is normally 8 lbs at an average mom/100 of 9.

Section VI Wt and Bal/Equip List

USEFUL LOAD WEIGHTS AND MOMENTS

		*FRONT SEATS	3RD AND	4TH SEATS
			BENCH	SPLIT
-			SEAT	SEAT
	WEIGHT	ARM	ARM	ARM
		**110	**142	**144
		MOM	MOM	MOM
		100	100	100
	120	132	170	173
	130	143	185	187
	140	154	199	202
	150	165	213	216
	160	176	227	230
	170	187	241	245
	180	198	256	259
	190	209	270	274
	200	220	284	288

OCCUPANTS

*Reclining seat with back in full-up position.

** Values computed from a C.G. criterion based on a 170 pound male. Differences in physical characteristics can cause variation in center of gravity location.

Section VI Wt and Bal/Equip List

BEECHCRAFT Sierra 200 B24R

USEFUL LOAD WEIGHTS AND MOMENTS OCCUPANTS

	5th & 6t ARM	n SEATS 171	
Weight	Moment 100	Weight	Moment 100
80	137	140	239
90	154	150	257
100	171	160	274
110	188	170	291
120	205	180	308
130	222	190	325
		200	342

USABLE FUEL

CALLONIC	ARIVI 117	ARM 117						
GALLONS	WEIGHT	MOMENT/100						
5	30	35						
10	60	70						
15	90	105						
20	120	140						
22	132	154						
25	150	176						
27	162	189						
30	180	211						
32	192	225						
35	210	246						
37	222	259						
40	240	281						
45	270	316						
50	300	351						
52	312	365						

USEFUL LOAD WEIGHTS AND MOMENTS

BAGGAGE ARM 167

	Weight	Moment 100	Weight	Moment 100
	10 20	17 33	150 160	251 267
\bigcirc	30 40	50 67	170	284 301
	50 60 70	84 100	200	317 334 251
	80	134	220	367
	100 110	167 184	240	401 418
	120 130	200 217	260 270	434 451
	140	234		

Section VI Wt and Bal/Equip List

February 1980

6-20

SECTION VII

SYSTEMS DESCRIPTION

TABLE OF CONTENTS

	SUBJECT F	PAGE
	Airframe	7-5
	Seating Arrangements	7-5
	Flight Controls	
	Control Surfaces	7-5
	Control Column	7-5
	Rudder Pedals	7-6
	Stabilator Trim System	
	Manual Trim	7-6
	Electric Trim	7-6
	Instrument Panel	7-6
	Illustration	7-7
	Switches	7-8
	Circuit Breakers	7-8
	Flight Instruments	7-8
	Ground Control	7-8
	Wing Flaps	
	Manual	7-9
	Electric	7-9
/	Effect of Flaps on Flight	7-10
	Landing Gear	7-10
	Control Switch	7-10
	Position Indicators	7-11
	Safety Retraction Switch	7-11
	Warning Horn	7-11
	Circuit Breaker	7-12
	Emergency Extension	7-12

February 1980

Section VII Systems Description

TABLE OF CONTENTS (Continued)

SUBJECT

Brakes	7-12		
Landing Gear Safety Extension System	7-13		
Baggage Compartment	7-14		
Seats, Seat Belts, and Shoulder Harnesses			
Seat Adjustments	7-14		
Seat Belts	7-15		
Shoulder Harnesses	7-15		
Doors and Exits			
Forward Cabin Doors	7-16		
Aft Utility Door	7-16		
Emergency Exits	7-16		
Control Lock	7-17		
Engine	7-17		
Engine Controls	7-18		
Engine Instruments	7-18		
Manifold Pressure and Fuel			
Flow Indicator	7-18		
Illustration	7-19		
Exhaust Gas Temperature			
Indicator (EGT)	7-20		
Engine Break-in Information	7-20		
Cowling	7-20		
Lubrication System	7-20		
Induction System Icing	7-21		
Starter	7-22		
Propeller	7-22		
Fuel System	7-22		
Illustration	7-22		
Fuel Tanks	7-22		
Fuel Quantity Indicators	7-23		
Fuel Boost Pump	7-23		
Fuel Tank Selection	7-23		
Fuel Required for Flight	7-24		

BEECHCRAFT Sierra 200 B24R

PAGE

Section VII Systems Description

TABLE OF CONTENTS (Continued)

SUBJECT

PAGE

	Electrical System	7-24
	Battery	7-24
	Alternator	7-25
	External Power Receptacle (Optional)	7-26
1	Lighting Systems	
	Interior Lighting	7-27
)	Exterior Lighting	7-27
	Environmental Systems	
	Cabin Heating	7-28
	Ventilation	7-28
	Environmental Schematic 7-29,	7-30
1	Pitot and Static Systems	
	Pitot System (Optional)	7-31
	Pitot Heat	7-31
	Normal Static Air System	7-31
	Emergency Static Air System	7-31
`	Vacuum System	7-32
	Stall Warning System	7-32

Section VII Systems Description BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

AIRFRAME

The BEECHCRAFT Sierra 200 B24R is a four-to-six place, all-metal, single-engine airplane with retractable landing gear and conventional flight control surfaces except for a stabilator for the horizontal empennage surface.

SEATING ARRANGEMENTS

In the standard configuration two adjustable seats and one fixed-bench seat are installed. Optional split 3rd and 4th seats and a fixed bench children's seat are available.

FLIGHT CONTROLS

CONTROL SURFACES

The control surfaces are operated with conventional cable systems terminating in bellcranks.

CONTROL COLUMN

A single control column/wheel is installed as standard equipment on the left side. The optional control column/wheel may be installed on the right side.

Section VII Systems Description

RUDDER PEDALS

The standard installation provides pedals for rudder control on the left side only. The optional installation provides a set of rudder pedals for each side.

STABILATOR TRIM SYSTEM

MANUAL TRIM

The manual stabilator trim is actuated by a handwheel located between the front seats. A stabilator tab position indicator is located adjacent to the trim control handwheel. Forward movement of the wheel trims the airplane's nose down, aft movement of the wheel trims the airplane's nose up.

ELECTRIC TRIM

The optional electric stabilator trim system is controlled by the ON-OFF circuit breaker type switch located on the instrument panel, and a thumb switch on the control wheel. The ON-OFF switch must be in the ON position to operate the system. The thumb switch is moved forward for nose down, aft for nose up and when released, returns to the center OFF position. When the system is not being electrically actuated, the manual trim control wheel may be used.

INSTRUMENT PANEL

The standard instrument panel consists of flight and navigation instruments on the left, and an avionics section on the right. The switching panel and the engine gages are located on the left subpanel and the circuit breaker grouping is on the right subpanel.

TYPICAL INSTRUMENT PANEL

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

SWITCHES

The BATTERY & ALT, ALT, and FUEL BOOST switches are grouped on the subpanel to the right of the pilot's control column under the marking MASTER. The Pitot Heat, Electric Trim, Magneto/Start, and light switches are to the left of the pilot's control column.

CIRCUIT BREAKERS

The circuit breakers are located on the right subpanel.

FLIGHT INSTRUMENTS

The standard flight instruments are grouped in a "T" pattern on the main panel for the best presentation for the pilot. The magnetic compass is located above the instrument panel.

Ram air pressure for the airspeed indicator enters through the pitot tube under the left wing, static air pressure for the altimeter, vertical speed and airspeed indicator is supplied by a static port on each side of the fuselage, just aft of the cabin.

The instruments are illuminated either by an overhead flood light or post lights. The flood light is controlled by a rheostat switch located below the power quadrant on the pedestal, while the post light installation is controlled by a rheostat switch on the left subpanel.

GROUND CONTROL

Steering is accomplished by the use of rudder pedals through a spring-loaded linkage connecting the nose gear to the rudder pedals. The nose gear maximum travel is 30° right and 27° left. A hydraulic shimmy damper on the nose

gear yoke compensates for any tendency to shimmy. Toe brakes may be used to aid in steering the airplane on the ground.

The minimum wing-tip turning radius, using full steering, one brake and partial power is 26 feet 10 inches.

WING FLAPS

MANUAL

The four position flaps are operated by a manual lever located between the front seats. In addition to the full flap down position of 35° , intermediate positions are provided. As the handle is raised to lower the flaps, a definite detent and click of the thumb release button will be felt at the 15° and 25° flap extended positions. Another detent will indicate the 35° position. To retract the flaps, depress the thumb button and lower the handle to the floor. The thumb button does not need to be depressed, nor should it be, to lower the flaps.

ELECTRIC

The electric wing flaps are controlled by a three-position switch UP, OFF and DOWN, located to the right of the power quadrant. The switch must be pulled out of detent before it can be repositioned. A dial type indicator, located adjacent to the flap handle switch, has markings for UP, 10°, 15°, 20° and DOWN. In addition, a green radial is placed on the indicator at the 15° position to denote flap position for takeoffs.

Limit switches automatically turn off the electrical motor when the flaps reach the extremes of travel. Intermediate flap positions can be obtained by placing the three-position switch in the OFF position during flap extension or retraction.

EFFECT OF FLAPS ON FLIGHT

TAKEOFF

Retraction of take-off flaps (15° for takeoff), during climbout, requires no change in trim and only light changes in control forces. The light forces dissipate without change in trim or significant change in airspeed.

CAUTION

Establish recovery altitude, recovery power, and airspeed before retracting flaps during slow flight, particularly during recoveries from approach configuration.

LANDING GEAR

The retractable tricycle landing gear, fabricated from magnesium castings and aluminum forgings, uses rubber disks for shock absorption.

The gears are identical except for the pivoting action during retraction and the steering provisions on the nose gear. Retraction and extension of the gear is accomplished through the use of an electric-driven hydraulic pump and hydraulic system. The landing gear may be hydraulically extended or retracted, and may be lowered manually. (See Emergency Extension Procedures)

CONTROL SWITCH

The landing gear is controlled by a two-position switch on the right side of the left subpanel. The switch handle must be pulled out of the safety detent before it can be moved to the opposite position.

POSITION INDICATORS

The landing gear position indicator lights are located adjacent to the landing gear switch handle. Three green lights, one for each gear, are illuminated whenever the landing gear is down and locked. The red light illuminates any time one or all of the landing gear are in transit or in any intermediate position. All of the lights will be out when the gear is up and locked.

Testing of the landing gear position indicator bulbs is accomplished by pressing each individual indicator. The intensity of the lamps can be controlled by turning the lens holder on each lamp.

SAFETY RETRACTION SWITCH

To prevent inadvertent retraction of the landing gear on the ground, a safety pressure switch located in the pitot system, deactivates the hydraulic pressure pump circuit when the impact air pressure is below 68 to 72 mph.

WARNING

Never rely on the safety switch to keep the gear down during taxi or on take-off, landing roll, or in a static position. Always make certain that the landing gear switch is in the down position during these operations.

WARNING HORN

With the landing gear retracted, if the throttle is retarded below approximately 12 in. Hg manifold pressure, a warning horn will sound continuously.

Section VII Systems Description

BEECHCRAFT Sierra 200 B24B

CIRCUIT BREAKER

The landing gear motor circuit breaker is located on the right subpanel. This circuit breaker is a pull-and-reset type breaker. A white circle identifies this circuit breaker. The breaker will pop out under overload conditions. The remainder of the landing gear circuitry is protected by a push-to-reset circuit breaker marked LDG GEAR.

EMERGENCY EXTENSION

The landing gear can be extended by turning the hydraulic pressure bypass valve 90° counterclockwise. The valve is located on the floor in front of the pilot's seat. When the system pressure is released the gear will fall into the down-and-locked position. This extension procedure is outlined in EMERGENCY PROCEDURES Section.

NOTE

Repeated emergency extension of the landing gear may deplete the hydraulic fluid reservoir supply.

BRAKES

The brakes on the main landing gear wheels are operated by applying toe pressure to the rudder pedals. The parking brake push-pull control is located on the right side of the lower left subpanel. To set the parking brakes, pull the control out and depress the pilot's toe pedals until firm. Push the control in to release the brakes

NOTE

Wheel chocks should be installed and the parking brake left off if the airplane is to be left unattended. Changes in ambient temperature can cause the brakes to release or to exert excessive pressures.

LANDING GEAR SAFETY EXTENSION SYSTEM

The landing gear safety system is designed to prevent "gear up" landings. The system is to be used as a safety device only; normal usage of the landing gear position switch is mandatory.

To extend the landing gear, place the landing gear safety system ON-OFF switch in the ON position. The landing gear will be automatically extended when: (1) the airspeed is below approximately 100 kts/115 mph IAS and (2) the engine is operating at a throttle position corresponding to approximately 18 inches or less of manifold pressure.

To retract the landing gear, place the landing gear safety system ON-OFF switch in the ON position. The landing gear will not retract unless: (1) the landing gear position switch is in the UP position, (2) the airspeed is above approximately 63 kts/72 mph IAS and (3) the engine is operating at a throttle position corresponding to approximately 20 inches or more of manifold pressure.

If landing gear retraction is desired when the throttle position corresponds to 20 inches of manifold pressure or less, the landing gear safety system ON-OFF switch must be placed in the OFF position before placing the landing gear position switch in the UP position.

Section VII Systems Description

In the event of an emergency, automatic extension of the landing gear may be prevented by placing the landing gear safety system ON-OFF switch in the OFF position, thus deactivating the safety system.

BAGGAGE COMPARTMENT

A 19.5 cubic-foot baggage space is located behind the 3rd and 4th seats. In addition a hat shelf, near the top of the cabin enclosure provides an out-of-the-way space for light miscellaneous articles. Both the baggage compartment and hat shelf are accessible in flight.

WARNING

Do not carry hazardous material anywhere in the airplane.

Do not carry children in the baggage compartment.

SEATS, SEAT BELTS, AND SHOULDER HARNESSES

SEAT ADJUSTMENTS

To adjust either of the front seats, pull the release knob located below the left forward seat corner (pull to the right, then up) and slide the seat forward or aft as desired. Make certain the seat is locked securely in place after adjustment. The backs of the first, second and optional split third and fourth seats can be placed in any of four positions. The 5th and 6th bench-type children's seat is not adjustable. Outboard armrests for the front seats are attached to the cabin doors.

BEECHCRAFT Sierra 200 B24R

SEAT BELTS

All seats are provided with seat belts having a lever-action, quick-release, metal buckle. The seat belt length is adjustable. Holding the buckle at a right angle to the belt releases the binding action, allowing the belt to slip.

SHOULDER HARNESS

The shoulder harness installation is standard for both the pilot and the copilot seats. An inertia reel is located under the inboard side of the seat with a single strap. The strap is extended over the chest and shoulder and secured with a button type hook in the sidewall just aft of the upper cabin door corner. The spring loading at the inertia reel keeps the strap snug but will allow normal movement required during flight operations. The inertia reel is designed with a locking device that will secure in the event of sudden forward movement or an impact action.

WARNING

The seat belt is independent of the shoulder harness. However, the shoulder harness may be used only when the seat belt is fastened.

Occupants shorter than 4'7" are not to use shoulder harness.

DOORS AND EXITS

FORWARD CABIN DOORS

The airplane has a conventional cabin door on each side of the fuselage adjacent to the forward seats. The outside cabin door handle is spring-loaded to fit into a recess in the door. The door may be locked with a key. To open the door from the outside, lift the handle from its recess and pull until the door opens. To close the cabin door from the inside, grasp the armrest attached to the door and firmly pull the door closed. Opening the storm window will alleviate pressure inside the cabin as the door is being closed. Press firmly outward at the aft edge of the door. If any movement of the door is detected, completely open the door and close again following the above instructions. To open the door from the inside, lift the door release handle and pull until the door latch releases.

AFT UTILITY DOOR

A utility door, aft of the cabin door on the left side of the fuselage, is provided for loading cargo or passengers into the aft cabin. To open the door from the outside, grasp the flush handle and pull until the door opens. To open from the inside, (serials MC-427 and after and on MC-181 thru MC-426 after compliance with the latest revision of Beechcraft S.I. No. 0793-106) pull out on the pin adjacent to the door handle and rotate handle counterclockwise until door opens. This door can be locked with a key.

$\overline{}$

EMERGENCY EXITS

An emergency exit can be accomplished through any of the three doors.

CONTROL LOCK

A control lock is provided with the loose tools, to prevent movement of the control column and impairs access to the magneto/start switch.

To install the Control Lock:

- Level the control wheel and move control column so the holes in the control column hanger and control column will align to accept the pin.
- Push the control column lock pin through the hole provided in the control column hanger and into the hole in the underside of the control column tube assembly.
- 3. Ensure positive retention of the lock pin by positioning the hook over the control column.

WARNING

Before starting engine, remove the control lock by reversing the above procedure.

The BEECHCRAFT Sierra 200 B24R is powered by a Lycoming IO-360-A1B6 four-cylinder, horizontally opposed fuel injected engine, rated at 200 horsepower.

Normal operating engine speed range is 2200 to 2700 rpm.

ENGINE CONTROLS

The control levers are grouped along the upper face of the quadrant. Pushing forward on a control increases, while pulling back decreases the control's appropriate function. Their knobs are shaped to government standard configuration so they can be identified by touch. The controls are centrally located for ease of operation from either the left or right seats. A single controllable friction lock on the right side of the console permits manual adjusting of the pressure on the levers.

ENGINE INSTRUMENTS

The engine instrument cluster is located on the lower left subpanel and includes the left fuel quantity indicator, an ammeter, oil temperature, oil pressure and the right fuel quantity indicator. The tachometer and the manifold pressure/fuel flow indicators are located on the upper center of the instrument panel.

MANIFOLD PRESSURE AND FUEL FLOW INDICATOR

The manifold pressure portion of this instrument indicates the pressure of the fuel-air mixture entering the engine cylinders and is calibrated in inches of mercury. By observing the manifold pressure gage and adjusting the propeller and throttle controls, the power output of the engine can be adjusted to any of the power settings designated in the Cruise Power Setting tables in the PER-FORMANCE Section.

The fuel flow portion of the indicator is calibrated in gallons per hour, the green arc indicating fuel flow for normal operating limits. Red radials are placed at the minimum and maximum allowable fuel pressures, as indicated at the fuel injection manifold valve.
Section VII Systems Description

In the cruise power range the green sectors cover the fuel flow required from 55% to 75% power. The lowest value of a given sector is the lean limit setting and the highest value of the sector is the best-power setting for that particular power range.

The take-off and climb range is covered by green sectors for full power at various altitudes. The full power markings represent the maximum performance mixtures for the altitudes shown, permitting leaning of the mixture for maximum power and performance during high-altitude takeoffs and full-power climbs.

EXHAUST GAS TEMPERATURE INDICATOR (EGT)

This installation provides for sensitive and rapid indication of exhaust gas temperature to assist in adjusting the fuel/air mixture during cruise.

ENGINE BREAK-IN INFORMATION

New engines have been carefully run-in by the engine manufacturer. However, the engine should be operated on straight mineral oil for a minimum of 50 hours or until oil consumption stabilizes. After the first 25 hours of operation, drain and replace the mineral oil. A change to an approved engine oil should be made after the break-in period. Refer to Lycoming Engine Operator's Manual.

NOTE

In order to promote proper ring seating, cruise power settings of 65% to 75% should be used until a total of 50 hours has accumulated or until oil consumption has stabilized. This recommendation is applicable to in-service engines following cylinder replacement or topoverhaul of one or more cylinders, as well as to new engines.

COWLING

The cowling is the split-type and is removable to expose the engine and mount assemblies.

LUBRICATION SYSTEM

The engine oil system is the wet-sump type and has an 8quart capacity. Oil operating temperatures are controlled by an automatic thermostat bypass control. The bypass control will limit oil flow through the oil cooler when operating temperatures are below normal, and will permit the oil to bypass the cooler if it should become blocked.

INDUCTION SYSTEM ICING

The possibility of induction system icing is reduced by the non-icing characteristics of the fuel injected engine and the automatic alternate air source. Under certain conditions, however, impact ice can form at several points in the induction system. If the air intake or filter becomes clogged with ice, a spring-loaded door in the air intake duct will open automatically and the induction system will operate on alternate air.

STARTER

The starter is relay-controlled and is actuated by a rotary type, momentary-on switch incorporated in the Magneto/Start switch. The magneto/Start switch, located on the subpanel to the left of the pilot's control column, incorporates R (right), L (left), and BOTH magneto positions in addition to the normal OFF and START positions. After activation of the starter, the spring loaded switch returns to the BOTH position when released.

PROPELLER

Installed as standard equipment is a constant-speed, variable-pitch, 74-inch diameter propeller with two aluminum alloy blades. The pitch setting at the 30-inch station is $14.4^{\circ} \pm 2^{\circ}$ low and $29^{\circ} \pm 2^{\circ}$ high pitch. Normal operating range is 2200 to 2700 rpm.

Propeller rpm is controlled by a single-action, enginedriven propeller governor which regulates hydraulic oil pressure to the hub. The propeller control on the power quadrant allows the pilot to select the governor's rpm range. Governor-boosted oil pressure holds the propeller blades in a high pitch (low rpm) position during normal cruise operation. If oil pressure is lost, the propeller will go to the full high rpm (low pitch) position.

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

FUEL SYSTEM SCHEMATIC

FUEL SYSTEM

The airplane is designed for operation on 100 (Green) or 100LL (Blue) grade aviation gasoline.

FUEL TANKS

Fuel tanks located in each wing leading edge have a nominal capacity of 29.9 gallons. In the filler neck of each tank is a visual measuring tab which permits partial filling of the fuel system. When the fuel touches the bottom of the tab it indicates 15 gallons of fuel, and when filled to the slot in the tab it indicates 20 gallons of fuel. The indicating

Section VII Systems Description

system reads full at 20 gallons. The pilot must visually check the fuel level during preflight to ascertain desired level. Fuel is fed from the desired tank through a fuel selector valve in the center floorboard and then through a strainer to the engine-driven fuel pump.

FUEL QUANTITY INDICATORS

Fuel quantity is measured by a float operated sensor, located in each wing tank system. These transmit electrical signals that indicate fuel remaining in each tank. The indicators indicate full when 20 or more gallons are in each wing tank.

FUEL BOOST PUMP

The electric fuel boost pump, controlled by an ON-OFF toggle switch on the pilot's subpanel, provides pressure for starting and emergency operation. The fuel boost pump provides sufficient pressure for engine operation, should the engine-driven pump fail.

FUEL TANK SELECTION

The fuel selector valve handle is located on the floorboards between the pilot and copilot seats. Takeoffs and landings should be made using the tank that is more nearly full.

If the engine stops because of insufficient fuel, refer to the EMERGENCY PROCEDURES Section for the Air Start procedures.

FUEL REQUIRED FOR FLIGHT

It is the pilot's responsibility to ascertain that the fuel quantity indicators are functioning and maintaining a reasonable degree of accuracy, and to be certain of ample fuel for a flight. Takeoff is prohibited if the fuel quantity indicators do not indicate above the yellow arc. The caps should be removed and fuel quantity checked to give the pilot an indication of fuel on board. The airplane must be approximately level for visual inspection of the tank. Fuel should be added so that the amount of fuel will be not less than is required for takeoff. Plan for an ample margin of fuel for any flight.

ELECTRICAL SYSTEM

The system circuitry is the single-wire, ground-return type, with the airplane structure used as the ground return. The BATTERY & ALT, ALT, FUEL BOOST, and magneto/start switches are located on the left subpanel. The circuit breaker panel, located on the right subpanel, contains the protective circuit-breakers for the various electrical systems. Some switch-type circuit breakers are located on the left subpanel.

In addition, there is an in-line fuse in the rotating beacon wire and in the strobe light wire forward of the left subpanel, with spare fuses adjacent to the fuse holder.

BATTERY

A 12-volt battery is located in the aft fuselage. Battery servicing procedures are described in the HANDLING, SERVICING AND MAINTENANCE Section.

ALTERNATOR

The alternator maintains its full-rated 60-ampere output at cruise engine rpm, and uses a voltage regulator to adjust alternator output.

Since the alternator is not self-exciting, dual switches are required to activate the circuit. The switch placarded BATTERY & ALT, when placed in the ON position, will only activate the battery circuit. When this switch is on and the ALT switch is placed in the ON position, the alternator is excited by power from the airplane battery. When the BATTERY & ALT switch is in the OFF position, the alternator will be off regardless of the ALT switch position.

The alternator-field circuit breaker and alternator-output circuit breaker are located on the right subpanel.

CAUTION

Do not pull alternator circuit breaker to turn off electrical system except in an emergency.

The alternator output is controlled by a regulator to keep the battery in a fully charged condition. Monitoring the ammeter for proper operation of the alternator is the same as for a generator installation. A zero reading, which is normal in cruising flight, indicates that the battery is fully charged and that the alternator output has been adjusted by the voltage regulator to balance the load of the electrical equipment in use.

Should an alternator or regulator become inoperative, indicated by a heavy discharging or widely fluctuating ammeter indication, turn the ALT switch to OFF, and minimize the electrical current consumption, since only battery power is available. Have the difficulty corrected before the next flight.

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

Refer to HANDLING, SERVICING AND MAINTENANCE Section for minor maintenance of the alternator.

EXTERNAL POWER RECEPTACLE (OPTIONAL)

An external power receptacle kit, which consists of a built in receptacle at the aft cabin bulkhead of the airplane and a power cable with a plug to fit the receptacle, is offered for the convenience of the operator. The cable is designed to be used with an auxiliary power unit or any acceptable power source to aid in starting in cold weather or with a low battery. When auxiliary power is desired, connect the clamps of the cable to the remote power source, ensuring proper polarity. Turn on the airplane BATTERY & ALT switch. Turn off the ALT switch and make certain that all avionics equipment is off. Insert the power cable plug into the receptacle and start the airplane using normal starting procedures.

NOTE

If the external power cable supplied with the kit, is not available, check the polarity and connect the positive lead from the external power source to the positive battery terminal and the negative lead to the negative battery terminal.

LIGHTING SYSTEMS

INTERIOR LIGHTING

EXTERIOR LIGHTING

The switches for all of the exterior lights are located on the pilot's left subpanel. Each circuit is protected by a circuit breaker switch, circuit breaker, or fuse. The exterior lights consist of navigation lights on the wing tips and rudder, a landing light on the left outboard wing, an optional taxi light on each wing leading edge, and a rotating beacon located on top of the vertical stabilizer. The landing light can be used for approach and taxiing. For longer lamp life, use the landing light and taxi light sparingly; avoid prolonged operation which could cause overheating during ground maneuvering.

NOTE

Particularly at night, reflections from anticollision lights on clouds, dense haze or dust can produce optical illusions and intense vertigo. Such lights, when installed, should be turned off before entering an overcast; their use may not be advisable under instrument or limited VFR conditions.

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

ENVIRONMENTAL SYSTEMS

CABIN HEATING

Air for warming the cabin and defrosting the windshield enters through an intake on the forward engine baffle, passes through the heater and into a mixer box where it is blended with cold air to obtain the desired cabin temperature. Hot or cold air enters the cabin through the firewall outlets. The knob marked CABIN AIR regulates the quantity of air entering the cabin through these outlets. With the CABIN AIR knob in, pull out the CABIN HEAT knob for heated air and push it in for fresh air. See the following environmental schematics for number and location of cabin heat distribution outlets. Pull out the DEFROST knob for maximum defrost. Under extremely cold conditions, heating in the back seats can be improved by partially pulling the defrost knob.

VENTILATION

Fresh air for the cabin enters two grill type intakes immediately forward of the windshield. The air is ducted to four outlets, one on either side of the instrument panel and to one on either side of the rear seats. The flow of air is controlled by the rotation of these outlets.

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

PITOT AND STATIC SYSTEMS

PITOT SYSTEM

The pitot system provides a source of impact air for operation of the airspeed indicator. The pitot mast is located on the leading edge of the left wing.

PITOT HEAT (OPTIONAL)

The pitot mast is provided with an electric heating element which is turned on and off with a switch on the instrument panel. The switch should be ON when flying in visible moisture. It is not advisable to operate the pitot heating element on the ground except for testing or for short intervals of time to remove ice or snow.

NORMAL STATIC AIR SYSTEM

The normal static air system provides a source of static air to the flight instruments through a flush static fitting on each side of the aft fuselage. A union located inside a cover plate on the belly of the airplane provides a drain point to remove moisture from the system.

EMERGENCY STATIC AIR SYSTEM

An alternate (emergency) static air source may be installed to provide air for instrument operation should the normal static ports become blocked. The alternate source is installed on the pilot's lower left sidewall. Turning the red handle to the ON EMERGENCY position allows cabin air into the system. Refer to EMERGENCY PROCEDURES section for proper use of the system. For Airspeed Calibration and Altimeter Correction, refer to PERFORMANCE section

Section VII Systems Description

BEECHCRAFT Sierra 200 B24R

VACUUM SYSTEM

Vacuum for air-driven gyroscopic flight instruments and other air-driven equipment is supplied by an engine-driven vacuum pump. An adjustable relief valve controls suction by bleeding outside air into the vacuum pump.

A suction gage indicates system vacuum in inches of mercury. This instrument is located on the pilot's side of the instrument panel. The vacuum should be maintained within the green arc for proper operation of the air-driven instruments.

STALL WARNING SYSTEM

A stall warning horn located in the overhead speaker console is factory set to sound a warning 5 to 7 mph above a stall condition and continues steadily as the airplane approaches a complete stall. The stall warning horn, triggered by a sensing vane on the leading edge of the left wing, is equally effective in all flight configurations and at all weights.

WARNING

With the BATTERY & ALT switch in the OFF position the stall warning horn is inoperative. Airplane certification requires the stall warning system to be on during flight except in emergency conditions as stated in Section III.

SECTION VIII

HANDLING, SERVICING AND MAINTENANCE

TABLE OF CONTENTS

SUBJECT

PAGE

Introduction	8-3
Publications	8-4
Airplane Inspection Periods	8-4
Preventative Maintenance That May Be	
Accomplished By A Certificated Pilot	8-5
Alterations or Repairs to Airplane	8-5
Ground Handling	8-6
Towing	8-6
Parking	8-7
Control Column Lock Pin	8-7
Tie-Down	8-8
Jacking	8-8
Flyable Storage - 7 to 30 Days	8-9
Mooring	8-9
Fuel Cells	8-9
Flight Control Surfaces	8-9
Grounding	8-9
Pitot Tube	8-9
Windshield and Windows	8-9
During Flyable Storage 8	3-10
Preparation for Service	3-10
Prolonged Out of Service Care 8	3-11
External Power 8	3-11
Checking Electrical Equipment	3-12

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

TABLE OF CONTENTS (Continued)

SUBJECT

PAGE

Servicing	8-12	
Fuel System	8-12	
Oil System	8-14	
Recommended Oil Grades		
for Service	8-14	
Battery	8-15	
Tires	8-16	(
Shimmy Damper	8-16	
Brakes	8-16	
Induction Air Filter	8-17	
Vacuum System	8-17	
Propeller Blades	8-17	
Minor Maintenance	8-18	
Rubber Seals	8-18	
Alternator	8-18	
Magnetos	8-19	
Cleaning	8-20	
Exterior Paint Finishes	8-20	
Windshields and Windows	8-21	
Interior	8-22	1
Engine	8-22	
Lubrication	8-22	
Lubrication Points	8-24	
Recommended Servicing Schedule	8-30	
Consumable Materials	8-34	1
Approved Engine Oils	8-36	
Bulb Replacement Guide	8-38	
Overhaul or Replacement Schedule	8-39	

INTRODUCTION

The purpose of this section is to outline the requirements for maintaining the airplane in a condition equal to that of its original manufacture. This information sets the time frequency intervals at which the airplane should be taken to a BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer for periodic servicing or preventive maintenance.

 \bigcirc

The Federal Aviation Regulations place the responsibility for the maintenance of this airplane on the owner and operator of the airplane who must ensure that all maintenance is done by qualified mechanics in conformity with all airworthiness requirements established for this airplane.

All limits, procedures, safety practices, time limits, servicing and maintenance requirements contained in this handbook are considered mandatory.

Authorized BEECHCRAFT Aero or Aviation Centers and International Distributors or Dealers will have recommended modification, service, and operating procedures issued by both FAA and Beech Aircraft Corporation, designed to get maximum utility and safety from the airplane.

If a question should arise concerning the care of the airplane, it should be directed to Beech Aircraft Corporation, Liberal Division, Box 300, Liberal, Kansas 67901. Correspondence should contain the airplane serial number, which may be found on the manufacturer's placard located on the fuselage at the inboard end of the right flap.

PUBLICATIONS

The following publications are available through BEECHCRAFT Aero or Aviation Centers and International Distributors or Dealers:

- 1. Shop Manual
- 2. Parts Catalog
- 3. Service Instructions
- 4. Various Inspection Forms

NOTE

Neither Service Publications, Reissues, nor Revisions are automatically provided to the holder of this handbook. For information on how to obtain "Revision Service" applicable to this handbook, consult any BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer or refer to the latest revision of BEECH-CRAFT Service Instructions No. 0250-010.

AIRPLANE INSPECTION PERIODS

- 1. FAA Required Annual Inspections.
- 2. BEECHCRAFT Recommended Inspection Guide.
- 3. Continuing Care Inspection Guide.
- See "Recommended Servicing Schedule" and "Overhaul or Replacement Schedule" for further inspection schedules.

NOTE

In event of emergency gear or flap extension at speeds above the respective normal extension speeds, inspect gear retract rods, gear doors and flaps for damage or distortion before the next flight.

PREVENTATIVE MAINTENANCE THAT MAY BE ACCOMPLISHED BY A CERTIFICATED PILOT

 A certificated pilot may perform limited maintenance. Refer to FAR Part 43 for the items which may be accomplished.

To ensure proper procedures are followed, obtain a BEECHCRAFT Shop Manual for performing preventative maintenance.

2. All other maintenance must be performed by licensed personnel.

NOTE

Pilots operating airplanes of other than U.S. registry should refer to the regulations of the registering authority for information concerning preventative maintenance that may be performed by pilots.

The FAA should be contacted prior to any alterations on the airplane to ensure the airworthiness of the airplane is not violated.

NOTE

Alterations and repairs to the airplane must be made by properly licensed personnel.

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

GROUND HANDLING

The three-view drawing shows the minimum hangar clearances for a standard airplane. Allowances must be made for any special radio antennas and the possibility of an underinflated nose tire.

TOWING

CAUTION

Extreme care should be used when moving with power equipment. Should the nose gear be turned in excess of the red limit marks, there is a very good possibility the nose gear steering yoke and/or linkage may be damaged.

One person can move the airplane on a smooth and level surface, using the hand tow bar furnished with the loose equipment. Attach the tow bar to the tow lugs on the nose gear lower torque knee.

Where movement is restricted, two people can pivot the airplane on the main wheels. One person should push on the wing leading edge or hold the wing tip, while the other operates the tow bar.

CAUTION

Do not exert force on the propeller or control surfaces. Do not place weight on the stabilator to raise the nose wheel. Do not attempt to tow the airplane backward by the tail tie-down ring.

Section VIII Handling, Serv - Maint

PARKING

The parking brake push-pull control is located on the left side of the lower subpanel. To set the parking brakes, pull control out and depress the pilot's toe pedals until firm. Push the control in to release the brakes.

NOTE

The parking brake should be left off and wheel chocks installed if the airplane is to be left unattended. Changes in ambient temperature can cause the brakes to release or to exert excessive pressures.

CONTROL COLUMN LOCK PIN

- Level the control wheel and move control column so the holes in the control column hanger and the control column will align to accept the pin.
- Push the control column lock pin through the hole provided in the control column hanger and into the hole in the underside of the control column tube assembly.
- 3. Ensure positive retention of the lock pin by positioning the hook over the control column.

WARNING

Before starting engine, remove the lock reversing the above procedure.

Section VIII Handling, Serv - Maint BEECHCRAFT Sierra 200 B24R

TIE-DOWN

It is advisable to nose the airplane into the wind. Three tiedown lugs are provided:one on the lower side of each wing and a third at the rear of the fuselage.

- 1. Install the control column lock pin.
- 2. Chock the main wheels, fore and aft.
- Using nylon line or chain of sufficient strength, secure the airplane at the three points provided. DO NOT OVER TIGHTEN; if the line at the rear of the fuselage is excessively tight, the nose may rise and produce lift due to the angle of attack of the wings.
- 4. Release the parking brake.

If high winds are anticipated, a vertical tail post may be installed at the rear tie-down lug, and a tie-down line attached to the nose gear.

JACKING

Raise the individual gear for wheel and tire removal with a scissors jack under the axle. Also, jack pads are installed to facilitate landing gear retraction checks. Refer to the BEECHCRAFT Shop Manual for proper procedures.

WARNING

DO NOT enter the airplane while the airplane is on a wheel jack.

The landing gear circuit breaker should be pulled and the Emergency Gear Extension Valve should be open to relieve pressure in the hydraulic system, in order to prevent inadvertent retraction of the landing gear when an airplane is jacked.

FLYABLE STORAGE - 7 TO 30 DAYS

MOORING

If the airplane cannot be placed in a hangar, tie down securely at the three points provided. Do not use hemp or manila rope. It is recommended a tail support be used to lightly compress the nose gear and reduce the angle of attack of the wings. Attach a line to the nose gear for additional tie-down.

FUEL CELLS

Fill to capacity to minimize fuel vapor.

FLIGHT CONTROL SURFACES

Lock with internal locks.

GROUNDING

Static ground airplane securely and effectively.

PITOT TUBE

Install cover.

WINDSHIELD AND WINDOWS

Close window vent.

DURING FLYABLE STORAGE

In a favorable atmospheric environment the engine of an airplane that is flown intermittently can be adequately protected from corrosion by turning the engine over five revolutions by means of the propeller. This will dispel any beads of moisture that may have accummulated and spread the residual lubricating oil around the cylinder walls. Unless the airplane is flown, repeat this procedure every five days.

WARNING

Be sure the ignition switch is "OFF", the throttle closed, and mixture control in the idle cut-off position before turning the propeller. Do not stand in the path of propeller blades. Also, ground running the engine for brief periods of time is not a substitute for turning the engine over by hand; in fact, the practice of ground running will tend to aggravate rather than minimize corrosion formation in the engine.

After 30 days, the airplane should be flown for 30 minutes or a ground runup should be made long enough to produce an oil temperature within the lower green arc range. Excessive ground runup should be avoided.

PREPARATION FOR SERVICE

Remove all covers and tape, clean the airplane, and give it a thorough inspection, particularly wheel wells, flaps and control openings.

Preflight the airplane.

PROLONGED OUT OF SERVICE CARE

The storage procedures listed are intended to protect the airplane from deterioration while it is not in use. The primary objectives of these measures are to prevent corrosion and damage from exposure to the elements.

If the airplane is to be stored longer than 30 days refer to the appropriate airplane shop manual and Avco Lycoming Service Letter L180 or subsequent.

EXTERNAL POWER

When using external power, it is very important that the following precautions be observed:

- The airplane has a negative ground system. Exercise care to avoid reversed polarity. Be sure to connect the positive lead of the external power unit to the positive terminal of the airplane's external power receptacle and the negative lead to the negative terminal of the external power receptacle. A positive voltage must also be applied to the small guide pin.
- 2. To prevent arcing, make certain no power is being supplied when the connection is made.
- Make certain that the BATT & ALT switch is ON, the ALT switch and all avionics and electrical switches OFF, and a battery is in the system before connecting an external power unit. This protects the voltage regulators and associated electrical equipment from transients (power fluctuations).

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

CHECKING ELECTRICAL EQUIPMENT

Connect an auxiliary power unit as outlined above. Ensure that the current is stabilized prior to making any electrical equipment or avionics check.

CAUTION

If the auxiliary power unit has poor voltage regulation or produces voltage transients the equipment connected to the unit may be damaged.

SERVICING

FUEL SYSTEM

FUEL TANKS

See Consumable Materials for recommended fuel grades.

CAUTION

See Avco Lycoming Service Letter No. L185A or later revision for operation on alternate fuels.

Two 29.9 gallon fuel tanks are located in the wings just outboard of the wing root. A visual measuring tab located below the tank filler neck facilitates a fuel load of 15 gallons when the fuel reaches the bottom of the tab, or 20 gallons when the fuel reaches the top of the slot. This partial filling of the fuel tanks allows an increase in the payload. The fuel indicators on the instrument panel will indicate full tanks even though each tank contains only 20 gallons of fuel. \bigcirc

CAUTION

Connect a grounding cable from the fuel service unit to the airframe, and connect grounding cables from both the fuel service unit and the airplane to ground during fueling operations. This procedure reduces fire hazard.

FUEL DRAINS

Open each of the fuel drain valves daily to remove any condensation from the system. The two tank sump drains extend through the bottom of the wing skins, near the fuselage.

The system low spot drain is incorporated in the fuel strainer on the lower right side of the fuselage aft of the nose wheel.

Inspection and cleaning of the fuel strainers should be considered of the utmost importance as a regular part of preventive maintenance. The following inspection and cleaning intervals are recommendations only, since the frequency will depend upon service conditions and fuel handling cleanliness. When operating in localities where there is an excessive amount of sand or dirt, the strainers should be inspected at more frequent intervals.

The screen in the fuel strainer at the system low spot on the bottom of the fuselage should be removed and washed in fresh cleaning solvent at each 100-hour inspection of the airplane. Ordinarily, the finger strainers in the fuel tank outlets should not require cleaning unless there is a definite indication of solid foreign material in the tanks, or the airplane has been stored for an extended period.

After the fuel strainers have been reinstalled, the installations should be checked for leakage. Any fuel lines or fittings disconnected for maintenance purposes should be capped.

Section VIII Handling, Serv - Maint

the fuel from precipitation.

OIL SYSTEM

CAUTION

Frequently inspect the O-rings on the fuel filler caps for condition. Replace as required to prevent contamination of

During break-in periods on new engines, oil consumption tends to be higher, therefore, maximum range flights should be avoided and oil level brought to full after each flight during this period.

Check engine oil quantity before each flight. Under normal operating conditions, the oil should be changed after each 50 hours of engine operation. More frequent changes may be required under adverse operating conditions. Use engine oil as indicated in Consumable Materials in this section. The engine oil sump capacity is eight quarts. The normal operating range is six to eight quarts.

RECOMMENDED OIL GRADES FOR ENGINES

Average Ambient Air Temperature	MIL-L-6082 Grades	MIL-L-22851 Ashless Dispersant Grades
Above 60° F	SAE 50	SAE 40 or SAE 50
30° F to 90° F	SAE 40	SAE 40
0° F to 70° F	SAE 30	SAE 40 or SAE 30
Below 10° F	SAE 20	SAE 30

8-14

February 1980

BEECHCRAFT Sierra 200 B24R

BATTERY

A 12-volt, 25 amp-hour, lead-acid battery, located directly aft of the cabin area may be reached by removing the rear panel.

Check the battery regularly for fluid level and add distilled water as required. Clean, tight connections should be maintained at all times. Battery vents should be checked periodically for obstructions and for proper protrusion (3 inches from top of chamfer to skin line). The intake vent is chamfered forward and the exhaust vent is chamfered aft.

External power should be used for checking airplane electrical systems to prevent excess battery power loss, and for starting the engine during cold weather when more power is needed for cranking. Charging batteries in the airplane is discouraged. If the battery is low and needs charging and servicing, it should be removed from the airplane and serviced and charged in the manner prescribed in the shop manual.

WARNING

Always connect charging cables at the battery terminals first, then to the charging unit, to avoid sparks near the battery fumes since explosion could occur.

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

TIRES

The airplane is equipped with tube type tires. Inflate the 17.50×6.00 -6 main gear tires to 32 psi and the 14.20×5.00 -5 nose gear tire to 35 psi. Maintaining proper tire inflation will minimize tread wear and aid in preventing tire failure caused from running over sharp stones. When inflating tires, visually inspect them for cracks and breaks.

CAUTION

Beech Aircraft Corporation cannot recommend the use of recapped tires. Recapped tires have a tendency to swell as a result of the increased temperature generated during takeoff. Increased tire size can jeopardize proper function of the landing gear retract system, with the possibility of damage to the landing gear retract mechanism, or jamming of the tire in the wheel well.

SHIMMY DAMPER

A hydraulic shimmy damper is mounted on the nose wheel strut yoke. Whenever this component develops an external leak or a skip in the damping action, it should be replaced.

BRAKES

The brake hydraulic fluid reservoir is located on the firewall in the engine compartment. Refer to Consumable Materials in this section for hydraulic fluid specification.

Since the pistons move to compensate for lining wear, the brakes require no adjustment. Complete information on brake, wheel, and tire maintenance is contained in the appropriate manual included in the loose tools and accessories kit.

INDUCTION AIR FILTER

This filter should be inspected for foreign matter at least once during each 50-hour operating period. In adverse climatic conditions, or if the airplane is stored, preflight inspection is recommended.

To remove and clean the filter:

- 1. Remove the filter retaining screws.
- 2. Remove the filter.
- 3. Clean and service as described in the manufacturer's instructions on the filter.
- 4. Reinstall the filter.
- 5. Reinstall retaining screws. Tighten screws to assure that the filter is secure.

VACUUM SYSTEM

The foam rubber suction relief valve screen may be removed for cleaning by slipping it off the bottom of the valve. The screen may be cleaned with soap and water.

In addition, the airplane is equipped with a replaceable paper filter, mounted under the instrument panel on the upper left side of the firewall.

PROPELLER BLADES

The daily preflight inspection should include a careful examination of the propeller blades for nicks and scratches.

Each blade leading edge should receive particular attention. It is very important that all nicks and scratches be smoothed out and polished. The BEECHCRAFT Aero or Aviation Center and International Distributors or Dealers will be glad to answer any questions concerning propeller blade repair.

WARNING

When servicing a propeller, always make certain the ignition switch is off and that the engine has cooled completely. WHEN MOVING A PROPELLER, STAND IN THE CLEAR; there is always some danger of a cylinder firing when a propeller is moved.

MINOR MAINTENANCE

RUBBER SEALS

To prevent sticking of the rubber seals around the doors, the seals should be coated with Oakite 6 compound or powdered soapstone or equivalent.

ALTERNATOR

Since the alternator and voltage regulator are designed for use on only one polarity system, the following precautionary measures must be observed when working on the charging circuit, or serious damage to the electrical equipment will result:

- 1. When installing a battery, make certain that the ground polarity of the battery and the ground polarity of the alternator are the same.
- 2. When connecting a booster battery, be sure to connect the negative battery terminals together and the positive battery terminals together.

3. When using a battery charger, connect the positive lead of the charger to the positive battery terminal and the negative lead of the charger to the negative battery terminal.

- 4. Do not operate an alternator on open circuit. Be sure all circuit connections are secure.
- 5. Do not short across or ground any of the terminals on the alternator or voltage regulator.
- 6. Do not attempt to polarize an alternator.

MAGNETOS

Ordinarily, the magnetos will require only occasional adjustment, lubrication, and breaker point replacement. This work should be done by a BEECHCRAFT Aero or Aviation Center or International Distributor or Dealer.

WARNING

To be safe, treat the magnetos as hot whenever a switch lead is disconnected at any point; they do not have an internal automatic grounding device. The magnetos can be grounded by replacing the switch lead at the noise filter capacitor with a wire which is grounded to the engine case. Otherwise, all spark plug leads should be disconnected or the cable outlet plate on the rear of the magneto should be removed.

CLEANING

EXTERIOR PAINT FINISHES

In the standard configuration the airplane is painted with a lacquer paint finish. Optional urethane paint finishes are available.

LACQUER PAINT FINISHES

Because wax seals the paint from the outside air, a new lacquer paint finish should not be waxed for a period of 90 days to allow the paint to cure. Wash uncured painted surfaces with only cold or lukewarm (never hot) water and a mild non-detergent soap. Any rubbing of the painted surface should be done gently and held to a minimum to avoid cracking the paint film.

CAUTION

When washing the airplane with mild soap and water, use special care to avoid washing away grease from any lubricated area. After washing with solvent, lubricate all lubrication points. Premature wear of lubricated surfaces may result if the above precautions are not taken.

Prior to cleaning, cover the wheels, making certain the brake discs are covered. Attach the pitot cover securely, and plug or mask off all other openings. Be particularly careful to mask off the static air buttons before washing or waxing.

After the paint cures, a thorough waxing will protect painted and unpainted metal surfaces from a variety of highly corrosive elements. Flush loose dirt away first with clear water, then wash the airplane with a mild soap and

Section VIII Handling, Serv - Maint

water. Harsh, abrasive, or alkaline soaps or detergents should never be used. Use a soft cleaning cloth or chamois to prevent scratches when cleaning and polishing. Any good grade automobile wax may be used to preserve painted surfaces. To remove stubborn oil and grease, use a soft cloth dampened with naptha. After cleaning with naptha, the surface should be polished or waxed.

URETHANE PAINT FINISHES

The same procedures should be followed for cleaning urethane paint finishes as for lacquer paint finishes; however, urethane paint finishes are fully cured at the time of delivery.

WINDSHIELD AND WINDOWS

Exercise extreme care to prevent scratches when cleaning the Plexiglas windshield and windows. Never wipe them when dry. Flush the surface with clean water or a mild soap solution, then rub lightly with a grit-free soft cloth, sponge, or chamois. Use trisodium phosphate completely dissolved in water to remove oil and grease film. To remove stubborn grease and oil deposits, use hexane, aliphatic naptha, or methanol. Rinse with clean water; avoid prolonged rubbing.

CAUTION

Do not use gasoline, benzene, acetone, carbon tetrachloride, fire extinguisher fluid, deice fluid, or lacquer thinners on the windshield or windows, as these substances have a tendency to soften and craze the surface.

INTERIOR

The seats, rugs, upholstery panels, and headliner should be vacuum-cleaned frequently. Do not use water to clean fabric surfaces. Commercial foam-type cleaners or shampoos can be used to clean rugs, fabrics, and upholstery; however, the instructions on the container should be followed carefully.

Some plastic interior trim may be affected by ultra-violet rays from the sun over a period of time. The results of this exposure is a yellow stain that accumulates on the plastic.

It has been found that a commercial type scouring powder cleanser, used with a wet cloth, will successfully remove this stain without damaging the trim.

It must be noted that this type cleanser contains a high bleach content and should not be allowed to come in contact with any other interior material.

ENGINE

Clean the engine with kerosene, solvent, or any standard engine cleaning fluid. Spray or brush the fluid over the engine, then wash off with water and allow to dry.

LUBRICATION

Proper lubrication is essential in keeping the airplane components in top condition. If this operation is performed thoroughly, general maintenance will be reduced and the service life of the airplane will be greatly increased.

 \bigcirc

The grease fittings or parts must be wiped clean to make sure that no dirt is carried into the part when lubricated. Apply lubricant sparingly, but with assurance that the bearing surfaces are adequately covered. Wipe off excess lubricant to prevent the accumulation of dust and foreign material.

NOTE

Lubricate all pivotal points as shown on the Lubrication Diagram in the Shop Manual to ensure freedom of movement and proper functioning. More frequent lubrication may be required because of climate, or frequent usage of the airplane.

BEECHCRAFT Sierra 200 B24R

LUBRICATION POINTS

DETAIL A

NOSE GEAR STEERING

TRIM TAB ACTUATOR

15

BEECHCRAFT Sierra 200 B24R

DETAIL L

MC-152 thru MC-180

This screw must be completely tight to prevent binding.

LOOSEN NUT, REMOVE VALVE CONE, AND LUBRICATE CONE WITH VERY THIN COAT-ING OF LUBRICANT.

NOTE: MC-181 and after and airplanes having complied with BEECHCRAFT S.I. No. 0622-289 or S.I. No. 0838 need no lubrication.

NOTE: DO NOT OVER LUBRICATE VALVE CONE, APPLY MINIMUM AMOUNT OF LUBRICANT FOR COATING.

FUEL SELECTOR VALVE

DETAIL M

AILERON HINGE AND ROD ENDS

DETAIL N

BRAKE FLUID RESERVOIR

8-28

Section VIII Handling, Serv - Maint

LANDING GEAR RESERVOIR

NOTE

Numbers refer to items in the consumable materials chart. Lubricate all plain bearing bushings as required or every 500 hours with SAE No. 30 oil. Apply SAE No. 20 oil to push-pull control housings as required. Lubricate flight control pully bushings with SAE No. 30 oil every 1000 hours.

SAE 10w/30 oil is an acceptable replacement for SAE 20 or SAE 30 oil.

1.1					
	LUBRICANT (Number refers to item on Consumable Materials)	н , е	See Shop Manual 5	1 2 7 7	
ED SERVICING SCHEDULE	LOCATION (Letters refer to Lubrication Points Diagram)	Upper right side of engine Inboard bottom of wings Bottom of fuselage Top of wings	Behind aft cabin bulkhead In lower forward cowl On landing gear (I)	Lower side of engine Aft right side of accessory case and bottom of sump On firewall (N) Aft of rear seat bulkhead (O)	
RECOMMEND	ITEM	Check engine oil level Drain fuel tank drains Drain fuel system low spot Service fuel tanks	Check battery electrolyte Clean induction air filter Lubricate landing gear knee pins	Change engine oil Clean oil screens Central brake reservoir Hydraulic gear pump reservoir	
	INTERVAL	Pre- flight	25 Hrs.	50 Hrs.	

February 1980

BEECHCRAFT

Sierra 200 B24R

2				8	11		5	14	11	6	11		11	4, 10	1	11		11	5	-	
Bottom of wings and	fuselage	Forward of firewall		Landing gear (I)	On top of nose gear (A)		On aft side of nose gear (A)	Under floorboards (B)	Inboard end of flaps (B)		Bottom of rudder (C)		On rudder leading edge (D)	On trailing edge of	stabilator (E)	In aft tail section (F)		In wing forward of aileron	(G)	Outboard trailing edge of	wings (M)
Clean fuel system screens	and strainers	Clean suction relief valve	screen	Lubricate wheel bearings	Lubricate nose gear rod	end bearings	Lubricate nose gear swivel	Lubricate flap torque tubes	Lubricate flap rod end	bearings	Lubricate rudder bellcrank	pivot points	Lubricate rudder hinges	Lubricate stabilator trim	tab hinge and pin	Lubricate stabilator hinge	pivot point	Lubricate aileron bellcrank		Lubricate aileron pivotal	points and rod ends
100 Hrs.																					

RECOMMENDED SERVICING SCHEDULE

Consumable Materials) (Number refers LUBRICANT to item on σ (Letters refer to Lubrication Behind instrument panel (J) Behind instrument panel Forward cabin floor (H) Forward cabin floor (H) Points Diagram) LOCATION Lubricate trim tab actuator In aft tail section (K) In front nose cowl Aft fuselage Replace induction air filter Lubricate control column Replace gyro instrument Lubricate rudder pedal Lubricate rudder pedal Check gear motor ITEM central filter pivot points bellcrank rod ends brushes INTERVAL 1000 Hrs. 1200 Hrs. 300 Hrs. 500 Hrs.

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

As Req.	Fuel selector valve Clean spark plugs	Center floorboard (L) In engine compartment	15	Sierra 2
Per Ap- plicable FAR	Replace Emergency Locator Transmitter Battery	,		00 B24R
NOTES:	 Anytime the control surfa 	aces are altered, repaired, or ren	painted, they must be re-	

BEECHCRAFT

- Anytime the control surfaces are altered, repaired, or repainted, they must be rebalanced per the Shop Manual. <u>.</u>-
- Non-rechargeable Batteries: Replace after one cumulative hour or as noted on the battery. ^ci

Section VIII Handling, Serv - Maint

BEECHCRAFT Sierra 200 B24R

CONSUMABLE MATERIALS

ITEM	MATERIAL	SPECIFICATION	
*1.	Engine Oil	MIL-L-22851	(
2.	Solvent	PD680	
**3.	Fuel, Engine	100 (green) or 100LL (blue) Grade	(
***4.	Lubricant, Pow- dered Graphite	MIL-C-6711	
†5.	Grease (High & Low Tempera- ture)	Aero Lubriplate	
6.	Corrosion Preven- tive, Engine	MIL-C-6529	
7.	Hydraulic Fluid	MIL-H-5606	
††8.	Grease (General Purpose, Wide Temperature)	MIL-G-81322	(
††9.	Grease (High & Low Tempera- ture)	MIL-G-23827	
10.	Lubricating Oil (Low Tempera- ture)	MIL-L-7870	(
11.	Lubricating Oil	SAE No. 20 or 10W/30	
12.	Lubricating Oil	SAE No. 30 or 10W/30	(
†††13.	Lubricant, Rubber Seal	Oakite 6 Compound	

Section VIII Handling, Serv - Maint

	ITEM	MATERIAL	SPECIFICATION
/	††††14.	Lubricant, Silicone Spray	Krylon No. 1329 (or equivalent)
	15.	Lubricant, Fluorosilicone	Corning FS-1292
)	● 16.	Engine Fuel Additive	Alcor TCP Concentrate
	* Ash	less dispersant oil co	omplying with MIL-L-228

* Ashless dispersant oil complying with MIL-L-22851 is recommended after the oil consumption has stabilized or after the first 50 hours of operation. A straight mineral oil conforming to MIL-L-6082 may be used until the oil consumption has stabilized. Oil of seasonal viscosity, added to maintain the proper oil level during this break-in period, must comply with MIL-L-6082.

** If grade 100 (green) fuel is not available, use 100LL (blue).

*** Mix with quick-evaporating liquid naphtha and apply with a brush.

† Product of BRC Bearing Company, Wichita, Kansas.

†† In extremely cold climates, MIL-G-23827 grease should be used in place of MIL-G-81322 grease. Care should be exercised when using either MIL-G-81322 or MIL-G-23827 grease, as they contain a rust-preventing additive which is harmful to paint.

††† Product of Oakite Products, Inc., 50 Valley Road, Berkley Heights, NJ 07922.

†††† Product of Krylon Inc., Norristown, Pa.

 Alcor TCP Concentrate mixed according to the instructions provided by Alcor Inc., Alcor Inc. 10130 Jones-Maltsberger Road P.O. Box 32516 San Antonio, Texas 78284.

BEECHCRAFT Sierra 200 B24R

APPROVED ENGINE OILS COMPANY BRAND NAME Delta Petroleum Co., *Global Concentrate A Inc. Enjay Chemical *Paranox 160 and 165 Company *RT-451, RM-173E, RM-180E Mobil Oil Corporation Shell Oil Company *Shell Concentrate A - Code 60068 *Aeroshell W120 *Aeroshell W80 Texaco Incorporated *TX-6309 *Aircraft Engine Oil Premium AD120 *Aircraft Engine Oil Premium AD80 American Oil and *PO Aviation Lubricant 753 Supply Co. *Chevron Aero Oil Grade 120 Chevron Oil Company Humble Oil and *Esso Aviation Oil E-120 Refining Co. *Enco Aviation Oil E-120 *Esso Aviation Oil A-100 *Enco Aviation Oil A-100 *Esso Aviation Oil E-80 *Enco Aviation Oil E-80 Standard Oil Company *Chevron Aero Oil Grade 120

of California

Section VIII Handling, Serv - Maint

 \bigcirc

COMPANY

Castrol Oils, Canada Ltd.

Champlin Oil and Refining Co.

Chevron Oil Company

Continental Oil Company

Mobil Oil Corporation

Phillips Petroleum Co.

- **Castrolaero 113, Grade 1065 **Castrolaero 117, Grade 1100
- **Grade 1065 **Grade 1100

BRAND NAME

- **Chevron Aviation Oil 65 **Grade 1100
- **Conoco Aero Oil 1065 **Conoco Aero Oil 1100
- **Avrex 101/1065 **101/1100
- **Phillips 66 Aviation Engine Oil, Grade 1065 **Phillips 66 Aviation Engine Oil, Grade 1100

Shell Oil Company

**Aeroshell Oil 65 **Aeroshell Oil 100

* Ashless Dispersant Oils Complying with MIL-L-22851

NOTE

Ashless dispersant oil complying with MIL-L-22851 is recommended after the oil consumption has stabilized or after the first 50 hours of operation.

** Straight Mineral Oils Complying with MIL-L-6082

February 1980

8-37

NOTE

A straight mineral oil conforming to MIL-L-6082 may be used until the oil consumption has stabilized. Oil of seasonal viscosity, added to maintain the proper oil level during this break-in period, must comply with MIL-L-6082.

Vendors listed as meeting Federal and Military Specifications are provided as reference only and are not specifically recommended by Beech Aircraft Corporation. Any product conforming to the specification may be used.

BULB REPLACEMENT GUIDE

LOCATION	NUMBER	
Compass light	330	
Dome light, cabin	89	
Instrument flood light, overhead	89	\frown
Landing light, wing	4313	\bigcirc
Navigation light, tail cone	1777	
Navigation light, wing	1512	\bigcirc
Rotating beacon	WRM-44K or WRM-1940	0
Taxi light	4595	\bigcirc
Landing gear position light	330	
8-38	February 1980	

OVERHAUL OR REPLACEMENT SCHEDULE

The first overhaul or replacement should be performed not later than the required period. The condition of the item at the end of the first period can be used as a criterion for determining subsequent periods applicable to the individual airplane or fleet operation, providing the operator has an approved monitoring system.

The time periods for inspection noted in this handbook are based on average usage and average environmental conditions.

SPECIAL CONDITIONS CAUTIONARY NOTICE

Airplanes operated for Air Taxi or other than normal operation and airplanes operated in humid tropics or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and/or lack of lubrication. In these areas periodic inspections should be performed until the operator can set his own inspection periods based on experience.

NOTE

The required periods do not constitute a guarantee that the item will reach the period shown, as the aforementioned factors cannot be controlled by the manufacturer.

BEECHCRAFT Sierra 200 B24R

COMPONENT

OVERHAUL OR REPLACE

LANDING GEAR

On Condition

Hydraulic Pump, Motor Assembly (Brushes)

Brake Assembly Brake Lining Master Cylinder Shuttle Valve Assembly Parking Brake Valve All Hose **Retract Actuators** Shimmy Damper Wheels and Tires

Inspect every 500 hours Replace on condition On Condition

POWER PLANT

NOTE

When an engine has been overhauled, or a new engine installed, it is recommended that low power settings NOT be used until oil consumption has stabilized. The average time for piston ring seating is approximately 50 hours. Refer to Lycoming Engine Operator's Manual.

Engine **Engine Controls** Engine Vibration Isolator Mounts Exhaust System Starter

Every 1600 hours On Condition Engine change or on condition On Condition Inspect at engine overhaul, overhaul or replace on condition

COMPONENT

Alternator Oil Cooler

Propeller (Hartzell)

Propeller controls Propeller governor

Engine Driven Fuel Pump

Cabin Heat Muff All Hose carrying flammable liquid

Vacuum System Filter Vacuum Regulator Valve Vacuum Pump Section VIII Handling, Serv - Maint

OVERHAUL OR REPLACE

On Condition On Condition (replace when contaminated) *At engine overhaul or at unscheduled engine change but not to exceed 1500 hours or 4 years. On condition At engine overhaul but not to exceed 1500 hours or 3 vears At engine overhaul or on condition Inspect every 100 hours At engine overhaul or every 5 years. All other hoses on condition. Every 300 Hours On Condition At engine overhaul or on condition.

*See Hartzell Service Letter 61F or subsequent.

FUEL SYSTEM

Fuel Boost Pump All Hose carrying flammable liquid All Hose not carrying flammable liquid Fuel Selector Valve

Fuel Cell Drain Valve Wing Fuel Quantity Transmitters On condition At engine overhaul or every 5 years On Condition

Inspect every 100 hours; overhaul on condition On Condition On Condition

BEECHCRAFT Sierra 200 B24R

COMPONENT

OVERHAUL OR REPLACE

INSTRUMENTS

Turn Coordinator Altimeter

Directional Gyro Instrument Air Engine Indicator Units Airspeed Indicator Rate-of-Climb Indicator Fuel Quantity Indicator Manifold Pressure/ Fuel Flow Indicator Tachometer Free Air Temperature Indicator Flap Position Indicator On Condition Every 24 months per FAA Directive (Inspect and calibrate) On Condition On Condition On Condition On Condition On Condition On Condition On Condition

On Condition

On Condition

ELECTRICAL SYSTEM

Battery Master Relay All other Relays Voltage Regulator Starter Relay On Condition On Condition On Condition On Condition

FLAPS AND FLIGHT CONTROLS

Flight Controls Stabilator Tab Actuator Flap Motor and Actuator Drive Assembly Flap Motor Brushes On Condition On Condition On Condition

On Condition

Section VIII Handling, Serv - Maint

OVERHAUL OR REPLACE

MISCELLANEOUS

Seat Belts and Shoulder Harness Hand Fire Extinguisher

Cabin Heating and Ventilating Ducts Transponder Inspect every 12 months, replace on condition Inspect every 12 months, recharge as necessary On Condition, Inspect every 12 months Test and inspect every 24 months

INSPECTIONS

The FAA requires that an airplane used for hire be inspected at each 100 hours of operation by qualified personnel. Airplanes which are not used for hire are required to have an inspection by qualified personnel on an annual basis.

Good operating practice requires that the airplane be preflighted prior to takeoff. Items found during preflight and engine run-up should be corrected on the basis of their importance to the safe operation of the airplane; however, in any event, early correction of items found is good preventative maintenance.

Although it is not a requirement that FAA qualified personnel change the oil and inspect the airplane, except at the 100-hour/annual inspection, as noted above, it is recommended the airplane be given an inspection at the recommended oil change period. Any unsatisfactory items should be corrected, either at that time or as soon as practical, depending on the nature of the item.

BEECHCRAFT Sierra 200 B24R

The inspection at the recommended oil change interval should include the following:

Operational Inspection

- 1. Alternator/voltage regulator functioning
- 2. Engine instruments
- 3. Flight instruments
- 4. Idle rpm and mixture
- 5. Engine controls operation
- 6. All lights
- 7. Radio operation
- 8. Magneto check
- 9. Brake operation
- 10. Tank selector operation
- 11. Heat and vent system operation
- 12. Starter operation
- 13. Electrical switches and circuit breakers
- 14. Power check 2650 to 2700 rpm static

Power Plant

- 1. Oil screens cleaned.
- 2. Induction air filter cleaned.
- Check engine controls, wiring harness, and plumbing for clearance and security.
- Check propeller for rock damage, and spinner and spinner bulkheads for cracks and security; engine for oil leaks.
- Check engine baffles and cowling for cracks and security.
- Check exhaust system and air ducts for condition and security.
- Check for indications of oil leaks, condition and security of engine accessories.
- 8. Check brake system reservoir(s).
- 9. Clean and gap spark plugs.

Cabin and Aft Fuselage

- 1. Flight control operation through full travel and proper direction of travel.
- 2. Storm window and door operation.
- 3. Check interior furnishings and seat belts.
- 4. Check battery water level.
- 5. Check hydraulic pump reservoir.

Exterior

- Check flight control surfaces for condition and security.
- 2. Check tires, brake pucks and discs.
- Check static ports, pitot mast and fuel vent lines for obstructions.
- 4. Check general condition of fuselage and wings.

BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

February 1980

8-46

SECTION IX

SUPPLEMENTS

NOTE

The supplemental data contained in this section is for equipment that was delivered on the airplane including standard optional equipment that was available, whether it was installed or not. Supplements for equipment for which the vendor obtained a Supplemental Type Certificate were included as loose equipment with the airplane at the time of delivery. These and other Supplements for other equipment that was installed after the airplane was delivered new from the factory should be placed in this SUPPLEMENTS Section of this Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. Section IX Supplements BEECHCRAFT Sierra 200 B24R

 \bigcirc

INTENTIONALLY LEFT BLANK

PILOT'S OPERATING HANDBOOK

and

FAA APPROVED AIRPLANE FLIGHT MANUAL

LOG OF SUPPLEMENTS

Supp.	Part Number	Subject	Rev. No.	Date
1	169-590023-9	Certification in the United Kingdom		10/73

Section IX Supplements

BEECHCRAFT Sierra 200 B24R

INTENTIONALLY LEFT BLANK

February 1980

9-4

BEECHCRAFT B24R LANDPLANES

SUPPLEMENTAL DATA

for

CERTIFICATION IN THE UNITED KINGDOM

The following information in this document is supplied to meet CAA requirements, for BEECHCRAFT B24R Landplane Certification in the United Kingdom in the General Purpose Category, Performance Group E.

Date: October 31, 1973 P/N 169-590023-9 NORMAL TAKE-OFF DISTANCE – HARD SURFACE

(UNITED KINGDOM)

ASSOCIATED CONDITIONS

POWER	2700 RPM FULL THROTTLE
MIXTURE	LEAN TO FIFTD FLEVATION
FLAPS	15°
GEAR	RETRACTED, AFTER LIFT OFF
RUNWAY	PAVED, LEVEL, DRY SURFACE
WEIGHT	2750 LBS
TAKE OFF SPEEDS	LIFT OFF: 71 MPH/62 KTS IAS
	50 FT: 81 MPH/70 KTS IAS

NOTES

- FOR EACH 100 POUNDS BELOW 2750 LBS. REDUCE TABULATED DISTARCE BY 7% AND TAKE OF F SPEED BY 1 MPH.
 2. HATE OF CLIMB IS BASED ON OPERATION
 - 2. RATE OF CLIMB IS BASED ON OPERATION AT TAKE OFF POWER, WITH GEAR DOWN AND AT TAKE OFF SPEED.
 3. WHERE TOTAL DISTANCE VALUE HAS
 - WHERE TOTAL DISTANCE VALUE HAS BEEN DELETED, CLIMB PERFORMANCE AFTER LIFT-OFF IS LESS THAN 150 FPM

MIND		SEALEV	/EL			2000 F T				4000 FT				6000 FT				8000 FT	
COMPONENT DOWN		GROUNI	TOTAL D OVER 50 FT		0	ROUND	TOTAL OVER 50 FT			GROUND	TOTAL OVER 50 FT		0	ROUND	TOTAL OVER 50 FT			GROUND	TOTAL OVER 50 FT
RUNWAY	OAT	ROLL	OBSTACLE	OA	-	ROLL	OBSTACLE	OA	-	ROLL	OBSTACLE	OA	-	ROLL	OBSTACLE	AO .	-	ROLL	OBSTACLE
KNOIS	-	FEET	HEEL	-	ç	+ FF	FEET	-	0	LEE	ret I			LEE	FEEL	-	د	LEE	LEE I
	20 7	1003	1728	20	~	1172	2060	20	2	1374	2490	20	1	1614	3077	20	1.	1905	3981
	40 4	1087	1872	40	4	1269	2236	40	4	1485	2713	40	4	1744	3393	40	4	2056	4422
0	60 16	1174	2022	60	16	1370	2422	8	16	1091	2959	09	16	1879	3755	99	16	2212	4890
	80 27	1265	2181	80	27	1474	2620	8	27	1721	3227	80	27	2017	4147	80	27	2372	
	100 38	1359	2346	100	38	1590	2832	100	38	1845	3524	100	38	2160	4541	100	8	2538	
	20 .0	781	1437	20	~	922	1727	20	-	1090	2106	20	~	1293	2626	20	~	1539	3443
	40 4	851	1563	40	4	1003	1882	40	4	1185	2303	40	4	1403	2908	40	4	1669	3829
15	60 16	924	1694	60	16	1088	2046	60	16	1283	2522	60	16	1518	3232	99	16	1803	4252
	80 27	1001	1833	80	27	11/6	2221	80	27	1385	2760	80	27	1637	3583	8	27	1941	
	100 36	1080	1979	100	38	1267	2409	100	38	1491	3025	100	38	1760	3937	100	38	2085	I.
	20 7	585	1145	20	-	669	1394	20	~	837	1721	20	6	1004	2175	20	~	1209	2834
	40 4	642	1253	40	T.	766	1527	40	4	916	1893	40	4	1097	2423	40	-17	1319	3236
30	60 16	702	1365	8	16	836	1669	8	16	166	2084	09	16	1194	2708	99	16	1432	3614
	80 27	765	1485	80	27	606	1821	80	27	1083	2293	80	27	1294	3018	80	27	1551	
	100 36	830	1611	100	38	985	1985	100	38	1172	2525	100	38	1398	3332	100	38	1673	

NOTE: INCREASE TOTAL DISTANCES OVER 50 FT. OBSTACLE BY 18% TO OBTAIN DISTANCES APPLICABLE TO A SHORT DRY GRASS SURFACE WITH FIRM SUBSOIL.

Date: October 31, 1973 P/N 169-590023-9 NORMAL CLIMB (UNITED KINGDOM)

	0 RPM, FULL THROTTLE		
TED CONDITIONS:	270	UP	UP
ASSOCIA	POWER	FLAPS	GEAR

VEIGHT OUNDS OAT CLIMB SPEED OAT CLIMB SPEED OAT CLIMB SPEED OAT SPEED			S	EA LEVEL			40	00 FEET			8	000 FEET			7	2000 FEET		
20 7 98 20 7 713 0 -18 494 0 -18 225 40 4 937 931 92/80 60 16 360 -7 713 20 -7 447 20 -7 178 225 60 16 80 27 578 92/80 60 40 4 403 92/80 40 413 92/80 80 27 575 575 92/80 60 16 360 27 47 100 38 536 92/80 60 18 20 7 47 20 7 1101 20 7 814 0 18 56 0 18 20 7 47 40 4 1048 566 0 18 566 0 18 20 20 21/79 80 27 47 100 38	VEIGHT	°F OAT	ç	R/C FT/MIN	CLIMB SPEED MPH/KTS	°F OAT	с Ч	R/C :T/MIN	CLIMB SPEED MPH/KTS	°F OAT	°,	R/C FT/MIN	CLIMB SPEED MPH/KTS	°F OAT	ç	R/C FT/MIN	CLIMB SPEED MPH/KTS	
2750 40 4 937 40 4 66 7 447 20 7 147 178 92/80 60 7 178 92/80 60 7 178 92/80 60 7 178 92/80 80 7 178 92/80 80 7 178 92/80 80 7 178 92/80 80 7 179 92/80 80 7 179 92/80 80 7 41 131 92/80 80 7 41 131 92/80 80 77 41 131 92/80 80 71 41 131 92/80 80 77 41 131 92/80 80 77 41 131 92/80 80 77 41 131 92/80 80 77 41 131 92/80 131 92/80 130 130 130 130 130 130 130 130 130 130		20	1.	988		20	1.	713		0	-18	494		0	-18	226		
2750 60 16 801 32/80 60 16 32/80 40 4 131 92/80 80 27 400 4 131 92/80 80 27 410 4 131 92/80 80 27 410 80 27 410 80 27 410 80 27 410 4 131 92/80 80 27 410 4 131 92/80 80 27 41 410 4 131 92/80 80 27 41 410 4 131 92/80 80 27 41 411		40	4	937		40	4	668		20	Ŀ	447		20	Ŀ	178		
100 27 846 100 38 536 60 16 360 60 16 88 27 317 80 27 47 100 38 804 100 38 536 80 27 317 80 27 47 20 7 814 0 7 537 47 305 47 20 7 814 0 7 537 317 80 27 47 80 27 317 80 27 531 60 7 536 80 27 531 60 16 750 91/79 60 16 20 7 7 80 27 431 91/79 80 16 40 4 209 91/79 80 27 431 91/79 80 17 40 4 209 91/79 80 27 431	2750	60	16	168	92/80	60	16	622	92/80	40	4	403	92/80	40	4	131	92/80	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		80	27	846		80	27	578		09	16	360		60	16	88		
2600 7 1101 20 7 814 0 -18 586 0 -18 306 40 4 1048 91/79 60 16 70 3 537 20 7 537 20 7 258 91/79 80 7 258 91/79 40 4 20 7 258 91/79 80 7 258 91/79 80 7 258 91/79 40 4 20 91/79 40 4 91 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 20 91/79 40 4 40 40 <t< td=""><td></td><td>100</td><td>38</td><td>804</td><td></td><td>100</td><td>38</td><td>536</td><td></td><td>80</td><td>27</td><td>317</td><td></td><td>80</td><td>27</td><td>47</td><td></td><td></td></t<>		100	38	804		100	38	536		80	27	317		80	27	47		
3600 40 4 767 50 7 537 20 7 258 91/79 60 7 7 537 20 7 258 91/79 60 7 7 537 91/79 60 7 7 258 91/79 60 7 253 91/79 60 7 259 91/79 60 7 258 91/79 60 7 258 91/79 60 6 16 165 7 258 91/79 60 16 16 175 90 27 122 91/79 60 16 152 91/79 80 27 122 91/79 172 90 27 122 91/79 102 31 20 31 20 31 20 31 20 27 122 91/79 40 27 122 91/79 40 40 40 40 40 40 40 40 40 40		20	1.	1101		20	1.	814		0	-18	586		0	-18	306		
2600 60 16 720 91/79 60 16 720 91/79 40 4 200 91/79 80 27 93 90 100 38 90 10 3 90 1165 165 100 38 909 100 38 630 80 27 403 80 27 155 200 7 1272 20 7 966 0 -18 723 80 27 137 40 4 1215 20 7 966 0 -18 723 0 -18 426 40 4 1215 89/77 40 4 916 77 70 -7 375 2400 60 16 865 89/77 60 16 86 97/77 40 4 324 89/77 100 38 1014 80 27 60 16 5		40	4	1048		40	4	767		20	Ŀ	537		20	1-	258		
80 27 953 80 27 60 16	2600	60	16	666	91/79	60	16	720	91/79	40	4	491	91/79	40	4	209	91/79	
100 38 909 100 38 630 80 27 403 80 27 122 20 .7 1272 20 .7 966 0 .18 723 0 .18 426 40 4 1215 907 40 4 916 20 .7 671 20 .7 375 2400 60 16 165 895 89/77 60 16 855 89/77 40 4 324 89/77 100 38 106 38 771 80 27 530 80 27 23 89/77		80	27	953		80	27	674		60	16	447		60	16	165		
20 .7 1272 20 .7 966 0 .18 723 0 .18 426 40 4 1215 40 4 916 20 .7 671 20 .7 375 2400 60 16 103 89/77 60 4 916 20 .7 375 80 27 114 80 27 817 20 .7 671 20 .7 375 100 38 106 38 771 80 27 530 89/77 60 16 278 89/77 100 38 106 38 771 80 27 530 80 27 533		100	38	606		100	38	630		80	27	403		80	27	122		
2400 60 6 916 20 7 671 20 7 375 2400 60 16 1163 89/77 60 16 865 89/77 60 16 7/7 80 7 375 80 27 114 80 27 81 60 16 576 60 16 278 100 38 106 38 771 80 27 530 80 27 233		20	Ŀ	1272		20	1.	996		0	-18	723		0	-18	426		
2400 60 16 163 89/77 60 16 86 89/77 40 4 62.3 89/77 40 4 324 89/77 80 27 114 80 27 817 60 16 576 60 16 278 100 38 100 38 771 80 27 530 80 27 233		40	4	1215		40	4	916		20	L-	671		20	Ŀ	375		
80 27 1114 80 27 817 60 16 576 60 16 278 100 38 100 38 771 80 27 530 80 27 233	2400	60	16	1163	89/77	09	16	865	<i>TT</i> /68	40	4	623	89/77	40	4	324	11/68	
100 38 100 38 771 80 27 530 80 27 233		80	27	1114		80	27	817		09	16	576		60	16	278		
		100	38	1066		100	38	171		80	27	530		80	27	233		

NOTES: THE ABOVE NORMAL CLIMB DATA HAS BEEN FOUND SUBJECT TO A 70 FPM LOSS, WHICH IS DUE TO HIGH HUMIDITY AND/OR USE OF RICH MIXTURE. THIS FACTOR MUST BE TAKEN INTO ACCOUNT IN PLANNING PUBLIC TRANSPORT OPERATIONS, IN CONJUNCTION WITH THE AN(G)R'S. THE USE OF THIS FACTOR IS ALSO RECOMMENDED WHEN PLANNING OTHER FLIGHTS WITHIN THE UNITED KINGDOM.

Date: October 31, 1973 P/N 169-590023-9 Beechcraft Single Engine (Piston)

SECTION X SAFETY INFORMATION TABLE OF CONTENTS

SUBJECT	PAGE
Introduction	10-3
General Do's Don'ts	10-5 10-5 10-6
Sources of Information	10-7
Pilot's Operating Handbook and FAA Approved Airplane Flight Manual	10-7
BEECHCRAFT Service Publications	10-8
Federal Aviation Regulations Airworthiness Directives Airman's Information Manual Advisory Information FAA Advisory Circulars FAA General Aviation News FAA Accident Prevention Program Additional Information	10-10 10-10 10-11 10-12 10-12 10-15 10-16 10-16
General Information on Specific Topics Maintenance	10-18 10-18 10-20 10-21 10-22
Stowage of Articles Flight Operations General	10-22 10-23 10-23

Section X Safety Information Beechcraft Single Engine (Piston)

TABLE OF CONTENTS (Cont'd)

SUBJECT

PAGE

Preflight Inspection	10-23	
Weight and Balance	10-23	
Autopilots and Electric Trim Systems	10-24	
Turbulent Weather	10-28	
Wind Shear	10-30	
Weather Radar	10-31	
Mountain Flying	10-33	
VFR - Low Ceilings	10-34	
VFR at Night	10-34	
Vertigo - Disorientation	10-35	
Stalls, Slow Flight and Training	10-37	
Spins	10-37	
Descent	10-39	
Vortices - Wake Turbulence	10-40	
Takeoff and Landing Conditions	10-41	
Medical Facts for Pilots	10-41	
General	10-41	
Fatigue	10-42	
Hypoxia	10-42	
Hyperventilation	10-44	
Alcohol	10-45	
Drugs	10-46	
Scuba Diving	10-47	
Carbon Monoxide and Night Vision	10-47	
A Final Word	10-47	

Beechcraft Single Engine (Piston)

INTRODUCTION

Beech Aircraft Corporation has developed this special summary publication of safety information to refresh pilots' and owners' knowledge of safety related subjects. Topics in this publication are dealt with in more detail in FAA Advisory Circulars and other publications pertaining to the subject of safe flying.

The skilled pilot recognizes that safety consciousness is an integral - and never-ending - part of his or her job. Be thoroughly familiar with your airplane. Know its limitations and your own. Maintain your currency, or fly with a qualified instructor until you are current and proficient. Practice emergency procedures at safe altitudes and airspeeds, preferably with a qualified instructor pilot, until the required action can be accomplished without reference to the manual. Periodically review this safety information as part of your recurrency training regimen.

BEECHCRAFT airplanes are designed and built to provide you with many years of safe and efficient transportation. By maintaining your BEECHCRAFT properly and flying it prudently you will realize its full potential.

..... Beech Aircraft Corporation

Section X Safety Information

Beechcraft Single Engine (Piston)

WARNING

Because your aircraft is a high performance, high speed transportation vehicle, designed for operation in a threedimensional environment, special safety precautions must be observed to reduce the risk of fatal or serious injuries to the pilot(s) and occupant(s).

It is mandatory that you fully understand the contents of this manual and the other manuals which accompany the aircraft; that FAA requirements for ratings, certifications and review be scrupulously complied with; and that you allow only persons who are properly licensed and rated, and thoroughly familiar with the contents of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual to operate the aircraft. IMPROPER OPERATION OR MAINTENANCE OF AN AIRCRAFT, NO MATTER HOW WELL BUILT INITIALLY, CAN RESULT IN CONSIDERABLE DAMAGE OR TOTAL DESTRUCTION OF THE AIRCRAFT ALONG WITH SERIOUS OR FATAL INJURIES TO ALL OCCUPANTS.

Beechcraft Single Engine (Piston)

GENERAL

As a pilot, you are responsible to yourself and to those who fly with you, to other pilots and their passengers and to people on the ground, to fly wisely and safely.

The following material in this Safety Section covers several subjects in limited detail. Here are some condensed Do's and Don'ts.

DO'S

Be thoroughly familiar with your airplane, know its limitations and your own.

Be current in your airplane, or fly with a qualified instructor until you are current. Practice until you are proficient.

Preplan all aspects of your flight - including a proper weather briefing and adequate fuel reserves.

Use services available - weather briefing, inflight weather and Flight Service Station.

Carefully preflight your airplane.

Use the approved checklist.

Have more than enough fuel for takeoff, plus the trip, and an adequate reserve.

Be sure your weight and C.G. are within limits.

Use seatbelts and shoulder harnesses at all times.

Be sure all loose articles and baggage are secured.

Check freedom and proper direction of operation of all controls during preflight inspection.
Beechcraft Single Engine (Piston)

Avoid wake turbulence (Vortices).

Preplan fuel and fuel tank management before the actual flight. Utilize auxiliary tanks only in level cruise flight. Take off and land on the fullest main tank, NEVER use auxiliary tanks for takeoff or landing.

Practice emergency procedures at safe altitudes and airspeeds, preferably with a qualified instructor pilot, until the required action can be accomplished without reference to the manual.

Keep your airplane in good mechanical condition.

Stay informed and alert; fly in a sensible manner.

DON'TS

Don't take off with frost, ice or snow on the airplane.

Don't take off with less than minimum recommended fuel, plus adequate reserves, and don't run the tank dry before switching.

Don't fly in a reckless, show-off, or careless manner.

Don't fly into thunderstorms or severe weather.

Don't fly in possible icing conditions.

Don't fly close to mountainous terrain.

Don't apply controls abruptly or with high forces that could exceed design loads of the airplane.

Don't fly into weather conditions that are beyond your ratings or current proficiency.

10-6

Section X Safety Information

Don't fly when physically or mentally exhausted or below par.

Don't trust to luck.

SOUR

SOURCES OF INFORMATION

There is a wealth of information available to the pilot created for the sole purpose of making your flying safer, easier and more efficient. Take advantage of this knowledge and be prepared for an emergency in the event that one should occur.

PILOT'S OPERATING HANDBOOK AND FAA APPROVED AIRPLANE FLIGHT MANUAL

You must be thoroughly familiar with the contents of your operating manuals, placards, and check lists to ensure safe utilization of your airplane. When the airplane was manufactured, it was equipped with one or more of the following: placards, Owner's Manual, FAA Flight Manual, Approved Flight Manual Supplements, Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. Beech has revised and reissued many of the early manuals for certain models of airplanes in GAMA Standard Format as Pilot's Operating Handbooks and FAA Approved Airplane Flight Manuals. For simplicity and convenience, all official manuals in various models are referred to as the Pilot's Operating Handbook and FAA Approved Flight Manual. If the airplane has changed ownership, the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual may have been misplaced or may not be current. Replacement handbooks may be obtained from any BEECHCRAFT Aviation Center.

BEECHCRAFT SERVICE PUBLICATIONS

Beech Aircraft Corporation publishes a wide variety of manuals, service letters, service instructions, service bulletins, safety communiques and other publications for the various models of BEECHCRAFT airplanes. Information on how to obtain publications relating to your airplane is contained in BEECHCRAFT Service Bulletin number 2001, entitled "General - BEECHCRAFT Service Publications -What is Available and How to Obtain It."

Beech Aircraft Corporation automatically mails original issues and revisions of BEECHCRAFT Mandatory and Optional Service Bulletins, FAA Approved Flight Manual Supplements, reissues and revisions of FAA Approved Airplane Flight Manuals, Flight Handbooks, Owners Manuals, Pilot's Operating Manuals and Pilot's Operating Handbooks, and original issues and revisions of BEECHCRAFT Safety Communiques to BEECHCRAFT Owners addresses as listed by the FAA Aircraft Registration Branch List and the BEECHCRAFT International Owner Notification Service List. While this information is distributed by Beech Aircraft Corporation, Beech can not make changes in the name or address furnished by the FAA. The owner must contact the FAA regarding any changes to name or address. Their address is: FAA Aircraft Registration Branch (AAC250) P.O. Box 25082, Oklahoma City, OK 73125, Phone (405) 680-2131.

It is the responsibility of the FAA owner of record to ensure that any mailings from Beech are forwarded to the proper persons. Often the FAA registered owner is a bank or financing company or an individual not in possession of the airplane. Also, when an airplane is sold, there is a lag in processing the change in registration with the FAA. If you are a new owner, contact

your BEECHCRAFT dealer and ensure your manuals are up to date.

Beech Aircraft Corporation provides a subscription service which provides for direct factory mailing of BEECHCRAFT publications applicable to a specific serial number airplane. Details concerning the fees and ordering information for this owner subscription service are contained in Service Bulletin number 2001.

For owners who choose not to apply for a Publications Revision Subscription Service, Beech provides a free Owner Notification Service by which owners are notified by post card of BEECHCRAFT manual reissues, revisions and supplements which are being issued applicable to the airplane owned. On receipt of such notification, the owner may obtain the publication through a BEECHCRAFT Aviation Center, Aero Center or International Distributor. This notification service is available when requested by the owner. This request may be made by using the owner notification request card furnished with the loose equipment of each airplane at the time of delivery, or by a letter requesting this service, referencing the specific airplane serial number owned. Write to:

> Supervisor, Special Services Dept. 52 Beech Aircraft Corporation P.O. Box 85 Wichita, Kansas 67201-0085

From time to time Beech Aircraft Corporation issues BEECHCRAFT Safety Communiques dealing with the safe operation of a specific series of airplanes, or airplanes in general. It is recommended that each owner/ operator maintain a current file of these publications. Back issues of BEECHCRAFT Safety Communiques may be obtained without charge by sending a request,

Reechcraft Single Engine (Piston)

including airplane model and serial number, to the Supervisor, Special Services, at the address listed above.

Airworthiness Directives (AD's) are not issued by the manufacturer. They are issued and available from the FAA

FEDERAL AVIATION REGULATIONS

FAR Part 91, General Operating and Flight Rules, is a document of law governing operation of aircraft and the owner's and pilot's responsibilities. Some of the subjects covered are:

- Responsibilities and authority of the pilot-incommand
- Certificates required
- Liquor and drugs
- Flight plans
- Preflight action
- Fuel requirements
- Flight rules
- Maintenance, preventive maintenance, alterations, inspection and maintenance records

You, as a pilot, have responsibilities under government regulations. The regulations are designed for your protection and the protection of your passengers and the public. Compliance is mandatory.

AIRWORTHINESS DIRECTIVES

FAR Part 39 specifies that no person may operate a product to which an Airworthiness Directive issued by the FAA applies, except in accordance with the requirements of that Airworthiness Directive.

Section X Safety Information

AIRMAN'S INFORMATION MANUAL

The Airman's Information Manual (AIM) is designed to provide airmen with basic flight information and ATC procedures for use in the national airspace system of the United States. It also contains items of interest to pilots concerning health and medical facts, factors affecting flight safety, a pilot/controller glossary of terms in the Air Traffic Control system, information on safety, and accident/hazard reporting. It is revised at six-month intervals and can be purchased from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

This document contains a wealth of pilot information. Among the subjects are:

Controlled Airspace **Emergency Procedures** Services Available to Pilots Weather and Icing Radio Phraseology and Technique Mountain Flying Airport Operations Wake Turbulence - Vortices Clearances and Separations Medical Facts for Pilots Preflight Bird Hazards Departures - IFR Good Operating Practices En route - IFR Airport Location Director

October, 1990

Beechcraft Single Engine (Piston)

Arrival - IFR

All pilots must be thoroughly familiar with and use the information in the AIM.

ADVISORY INFORMATION

NOTAMS (Notices to Airmen) are documents that have information of a time-critical nature that would affect a pilot's decision to make a flight; for example, an airport closed, terminal radar out of service, or enroute navigational aids out of service.

FAA ADVISORY CIRCULARS

The FAA issues Advisory Circulars to inform the aviation public in a systematic way of nonregulatory material of interest. Advisory Circulars contain a wealth of information with which the prudent pilot should be familiar. A complete list of current FAA Advisory Circulars is published in AC 00-2, which lists Advisory Circulars that are for sale, as well as those distributed free of charge by the FAA, and provides ordering information. Many Advisory Circulars which are for sale can be purchased locally in aviation bookstores or at FBO's. These documents are subject to periodic revision. Be certain the Advisory Circular you are using the latest revision available. Some of the Advisory Circulars of interest to pilots are:

*00-6	Aviation Weather
00-24	Thunderstorms
00-30	Rules of Thumb for Avoiding or Minimizing Encounters with Clear Air Turbulence
*00-45	Aviation Weather Services

	Beechcraft Single Engine (Piston)	Section X Safety Information
\bigcirc	00-46	Aviation Safety Reporting Program
	20-5	Plane Sense
	20-32	Carbon Monoxide (CO) Contamination in Aircraft - Detection and Prevention
	20-35	Tie-Down Sense
	20-43	Aircraft Fuel Control
	20-105	Engine Power-Loss Accident Prevention
	20-113	Pilot Precautions and Procedures to be Taken in Preventing Aircraft Reciprocating Engine Induction System & Fuel System Icing Problems
	20-125	Water in Aviation Fuel
	21-4	Special Flight Permits for Operation of Overweight Aircraft
	43-9	Maintenance Records: General Aviation Aircraft
()	43-12	Preventive Maintenance
<u> </u>	60-4	Pilot's Spatial Disorientation
	60-6	Airplane Flight Manuals (AFM), Approved Manual Materials, Markings and Placards - Airplanes
	60-12	Availability of Industry- Developed Guidelines for the Conduct of the Biennial Flight Review
0	60-13	The Accident Prevention Counselor Program

 *61-9 Pilot Transition Courses for Complex Single-Engine and Light Twin-Engine Airplanes *61-21 Flight Training Handbook *61-23 Pilot's Handbook of Aeronautical Knowledge *61-27 Instrument Flying Handbook 61-67 Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning. 61-84 Role of Preflight Preparation *67-2 Medical Handbook for Pilots 90-23 Aircraft Wake Turbulence 90-42 Traffic Advisory Practices at Nontower Airports 90-48 Pilot's Role in Collision Avoidance 90-66 Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports 90-85 Severe Weather Avoidance Plan (SWAP) 91-6 Water, Slush and Snow on the Runway 91-13 Cold Weather Operation of Aircraft *91-23 Pilot's Weight and Balance Handbook 91-26 Maintenance and Handling of Air Driven Gyroscopic Instruments 	Section X Safety Information	Beechcraft Single Engine (Piston)	
 *61-21 Flight Training Handbook *61-23 Pilot's Handbook of Aeronautical Knowledge *61-27 Instrument Flying Handbook 61-67 Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning. 61-84 Role of Preflight Preparation *67-2 Medical Handbook for Pilots 90-23 Aircraft Wake Turbulence 90-42 Traffic Advisory Practices at Nontower Airports 90-66 Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports 90-85 Severe Weather Avoidance Plan (SWAP) 91-6 Water, Slush and Snow on the Runway 91-13 Cold Weather Operation of Aircraft *91-23 Pilot's Weight and Balance Handbook 91-26 Maintenance and Handling of Air Driven Gyroscopic Instruments 	*61-9	Pilot Transition Courses for Complex Single-Engine and Light Twin-Engine Airplanes)
*61-23Pilot's Aeronautical Knowledge*61-27Instrument Flying Handbook61-67Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning.61-84Role of Preflight Preparation*67-2Medical Handbook for Pilots90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	*61-21	Flight Training Handbook	
*61-27Instrument Flying Handbook61-67Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning.61-84Role of Preflight Preparation*67-2Medical Handbook for Pilots90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	*61-23	Pilot's Handbook of Aeronautical Knowledge)
61-67Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning.61-84Role of Preflight Preparation*67-2Medical Handbook for Pilots90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	*61-27	Instrument Flying Handbook	
61-84Role of Preflight Preparation*67-2Medical Handbook for Pilots90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	61-67	Hazards Associated with Spins in Airplanes Prohibited from Intentional Spinning.	
*67-2Medical Handbook for Pilots90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of 	61-84	Role of Preflight Preparation	
90-23Aircraft Wake Turbulence90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	*67-2	Medical Handbook for Pilots	
90-42Traffic Advisory Practices at Nontower Airports90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	90-23	Aircraft Wake Turbulence	
90-48Pilot's Role in Collision Avoidance90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Hadbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	90-42	Traffic Advisory Practices at Nontower Airports	
90-66Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the 	90-48	Pilot's Role in Collision Avoidance	
90-85Severe Weather Avoidance Plan (SWAP)91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance 	90-66	Recommended Standard Traffic Patterns for Airplane Operations at Uncontrolled Airports	
91-6Water, Slush and Snow on the Runway91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	90-85	Severe Weather Avoidance Plan (SWAP)	
91-13Cold Weather Operation of Aircraft*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	91-6	Water, Slush and Snow on the Runway	1
*91-23Pilot's Weight and Balance Handbook91-26Maintenance and Handling of Air Driven Gyroscopic Instruments	91-13	Cold Weather Operation of Aircraft	
91-26 Maintenance and Handling of Air Driven Gyroscopic Instruments	*91-23	Pilot's Weight and Balance Handbook	
	91-26	Maintenance and Handling of Air Driven Gyroscopic Instruments	

	Beechcraft Single Engine (Piston)	Section X Safety Information
\bigcirc	91-33	Use of Alternate Grades of Aviation Gasoline for Grade 80/ 87 and Use of Automotive Gasoline
\bigcirc	91-35	Noise, Hearing Damage, and Fatigue in General Aviation Pilots
	91-43	Unreliable Airspeed Indications
	91-44	Operational and Maintenance Practices for Emergency Locator Transmitters and Receivers
	91-46	Gyroscopic Instruments - Good Operating Practices
	91-50	Importance of Transponder Operations and Altitude Reporting
	91-51	Airplane Deice and Anti-ice Systems
	91-59	Inspection and Care of General Aviation Aircraft Exhaust Systems
	91-65	Use of Shoulder Harness in Passenger Seats
	103-4	Hazards Associated with Sublimation of Solid Carbon Dioxide (Dry Ice) Aboard Aircraft
	210-5A	Military Flying Activities
\bigcirc	NOTE:	
	* For Sale	
	October, 1990	10-15

Beechcraft Single Engine (Piston)

FAA GENERAL AVIATION NEWS

FAA General Aviation News is published by the FAA in the interest of flight safety. The magazine is designed to promote safety in the air by calling the attention of general aviation airmen to current technical, regulatory and procedural matters affecting the safe operation of aircraft. FAA General Aviation News is sold on subscription by the Superintendent of Documents, Government Printing Office, Washington D.C., 20402.

FAA ACCIDENT PREVENTION PROGRAM

The FAA assigns accident prevention specialists to each Flight Standards and General Aviation District Office to organize accident prevention program activities. In addition, there are over 3,000 volunteer airmen serving as accident prevention counselors, sharing their technical expertise and professional knowledge with the general aviation community. The FAA conducts seminars and workshops, and distributes invaluable safety information under this program.

Usually the airport manager, the FAA Flight Service Station (FSS), or Fixed Base Operator (FBO), will have a list of accident prevention counselors and their phone numbers available. All Flight Standards and General Aviation District Offices have a list of the counselors serving the District.

Before flying over unfamiliar territory, such as mountainous terrain or desert areas, it is advisable for transient pilots to consult with local counselors. They will be familiar with the more desirable routes, the wind and weather conditions, and the service and emergency landing areas that are available along the way. They can also offer advice on the type of emergency equipment you should be carrying.

Section X Safety Information

ADDITIONAL INFORMATION

The National Transportation Safety Board and the Federal Aviation Administration periodically issue, in greater detail, general aviation pamphlets concerning aviation safety. FAA Regional Offices also publish material under the FAA General Aviation Accident Prevention Program. These can be obtained at FAA Offices, Weather Stations, Flight Service Stations or Airport Facilities. Some of these are titled:

12 Golden Rules for Pilots Weather or Not Disorientation Plane Sense Weather Info Guide for Pilots Wake Turbulence Don't Trust to Luck, Trust to Safety Rain, Fog, Snow Thunderstorm - TRW Icing Pilot's Weather Briefing Guide Thunderstorms Don't Flirt ... Skirt 'em IFR-VFR - Either Way Disorientation Can Be Fatal IFR Pilot Exam-O-Grams VER Pilot Exam-O-Grams Tips on Engine Operation in Small General Aviation Aircraft Estimating Inflight Visibility Is the Aircraft Ready for Flight Tips on Mountain Flying

Beechcraft Single Engine (Piston)

Tips on Desert Flying Always Leave Yourself An Out Safety Guide for Private Aircraft Owners Tips on How to Use the Flight Planner Tips on the Use of Ailerons and Rudder Some Hard Facts About Soft Landings Propeller Operation and Care Torque "What it Means to the Pilot" Weight and Balance. An Important Safety Consideration for Pilots

GENERAL INFORMATION ON SPECIFIC TOPICS

MAINTENANCE

Safety of flight begins with a well maintained airplane. Make it a habit to keep your aircraft and all its equipment in airworthy condition. Keep a "squawk list" on board, and see that all discrepancies, however minor, are noted and promptly corrected.

Schedule your maintenance regularly, and have your aircraft serviced by a reputable organization. Be suspicious of bargain prices for maintenance, repair and inspections.

It is the responsibility of the owner and the operator to assure that the airplane is maintained in an airworthy condition and that proper maintenance records are kept.

Use only genuine BEECHCRAFT or BEECHCRAFT approved parts obtained from BEECHCRAFT approved sources, in connection with the maintenance and repair of Beech airplanes.

Section X Safety Information

Genuine BEECHCRAFT parts are produced and inspected under rigorous procedures to insure airworthiness and suitability for use in Beech airplane applications. Parts purchased from sources other than BEECHCRAFT, even though outwardly identical in appearance, may not have had the required tests and inspections performed, may be different in fabrication techniques and materials, and may be dangerous when installed in an airplane.

Salvaged airplane parts, reworked parts obtained from non-BEECHCRAFT approved sources or parts, components, or structural assemblies, the service history of which is unknown or cannot be authenticated, may have been subjected to unacceptable stresses or temperatures or have other hidden damage not discernible through routine visual or usual nondestructive testing techniques. This may render the part, component, or structural assembly, even though originally manufactured by BEECHCRAFT, unsuitable and unsafe for airplane use.

BEECHCRAFT expressly disclaims any responsibility for malfunctions, failures, damage or injury caused by use of non-BEECHCRAFT parts.

Airplanes operated for Air Taxi or other than normal operation, and airplanes operated in humid tropics, or cold and damp climates, etc., may need more frequent inspections for wear, corrosion and/or lack of lubrication. In these areas, periodic inspections should be performed until the operator can set his own inspection periods based on experience. NOTE

The required periods do not constitute a guarantee that the item will reach the period without malfunction, as the aforementioned factors cannot be controlled by the manufacturer.

Corrosion and its effects must be treated at the earliest possible opportunity. A clean, dry surface is virtually immune to corrosion. Make sure that all drain holes remain unobstructed. Protective films and sealants help to keep corrosive agents from contacting metallic surfaces. Corrosion inspections should be made most frequently under high-corrosion-risk operating conditions. such areas excessive as in of airborne salt concentrations (e.g., near the sea) and in high-humidity areas (e.g., tropical regions).

If you have purchased a used aircraft, have your mechanic inspect the aircraft registration records, logbooks and maintenance records carefully. An unexplained period of time for which the aircraft has been out of service, or unexplained significant repairs may well indicate the aircraft has been seriously damaged in a prior accident. Have your mechanics inspect a used aircraft carefully. Take the time to ensure that you really know what you are buying when you buy a used aircraft.

HAZARDS OF UNAPPROVED MODIFICATIONS

Many aircraft modifications are approved under Supplemental Type Certificates (STC's). Before installing an STC on your airplane, check to make sure that the STC does not conflict with other STC's that have already been installed. Because approval of an STC is obtained by the individual STC holder based upon modification of

Section X Safety Information

the original type design, it is possible for STC's to interfere with each other when both are installed. Never install an unapproved modification of any type, however innocent the apparent modification may seem. Always obtain proper FAA approval.

Aircraft owners and maintenance personnel are particularly cautioned not to make attachments to, or otherwise modify, seats from original certification without approval from the FAA Engineering and Manufacturing District Office having original certification responsibility for that make and model.

Any unapproved attachment or modification to seat structure may increase load factors and metal stress which could cause failure of seat structure at a lesser "G" force than exhibited for original certification.

Examples of unauthorized attachments found are drilling holes in seat tubing to attach fire extinguishers and drilling holes to attach approach plate book bins to seats.

FLIGHT PLANNING

FAR Part 91 requires that each pilot in command, before beginning a flight, familiarize himself with all available information concerning that flight.

 \bigcirc

Obtain a current and complete preflight briefing. This should consist of local, enroute and destination weather and enroute navaid information. Enroute terrain and obstructions, alternate airports, airport runways active, length of runways, and takeoff and landing distances for the airplane for conditions expected should be known.

The prudent pilot will review his planned en route track and stations and make a list for quick reference. It is strongly recommended a flight plan be filed with Flight

Beechcraft Single Engine (Piston)

Service Stations, even though the flight may be VFR. Also, advise Flight Service Stations of changes or delays of one hour or more and remember to close the flight plan at destination.

The pilot must be completely familiar with the performance of the airplane and performance data in the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. The resultant effect of temperature and pressure altitude must be taken into account in performance if not accounted for on the charts. An applicable FAA Approved Flight Manual must be aboard the airplane at all times and include the weight and balance forms and equipment list.

PASSENGER INFORMATION CARDS

Beech has available, for most current production airplanes, passenger information cards which contain important information on the proper use of restraint systems, oxygen masks, emergency exits and emergency bracing procedures. Passenger information cards may be obtained at any BEECHCRAFT Aviation or Aero Center. A pilot should not only be familiar with the information contained in the cards, but should always, prior to flight, inform the passengers of the information contained in the information cards. The pilot should orally brief the passengers on the proper use of restraint systems, doors and emergency exits, and other emergency procedures, as required by Part 91 of the FAR's.

STOWAGE OF ARTICLES

The space between the seat pan and the floor is utilized to provide space for seat displacement. If hard, solid objects are stored beneath seats, the energy absorbing

Section X Safety Information

feature is lost and severe spinal injuries can occur to occupants.

Prior to flight, pilots should insure that articles are not stowed beneath seats that would restrict seat pan energy absorption or penetrate the seat in event of a high vertical velocity accident.

FLIGHT OPERATIONS

GENERAL

The pilot MUST be thoroughly familiar with ALL INFORMATION published by the manufacturer concerning the airplane, and is required by law to operate the airplane in accordance with the FAA Approved Airplane Flight Manual and placards installed.

PREFLIGHT INSPECTION

In addition to maintenance inspections and preflight information required by FAR Part 91, a complete, careful preflight inspection is imperative.

Each airplane has a checklist for the preflight inspection which must be followed. USE THE CHECKLIST!

WEIGHT AND BALANCE

Maintaining center of gravity within the approved envelope throughout the planned flight is an important safety consideration.

The airplane must be loaded so as not to exceed the weight and center of gravity (C.G.) limitations. Airplanes that are loaded above the maximum takeoff or landing weight limitations will have an overall lower level of

damping.

Because there are several different models of autopilots and electric trim systems installed in Beech airplanes and different installations and switch positions are possible from airplane to airplane, it is essential that every owner/ operator review his Airplane Flight Manual (AFM) Supplements and ensure that the supplements properly describe the autopilot and trim installations on his specific

AUTOPILOTS AND ELECTRIC TRIM SYSTEMS.

cause controllability problems.

If an airplane is loaded aft of the aft C.G. limitation, the pilot will experience a lower level of stability. Airplane characteristics that indicate a lower stability level are; lower control forces, difficulty in trimming the airplane. lower control forces for maneuvering with attendant danger of structural overload. decaved stall

characteristics, and a lower level of lateral-directional

Ensure that all cargo and baggage is properly secured before takeoff. A sudden shift in balance at rotation can

If an airplane is loaded so that the C.G. is forward of the forward limit, it will require additional control movements for maneuvering the airplane with correspondingly higher control forces. The pilot may have difficulty during takeoff and landing because of the elevator control limits.

performance compared to that shown in the Performance section of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. If loaded above maximum takeoff weight, takeoff distance and the landing distance will be longer than that shown in the Performance section; the stalling speed will be higher. rate of climb, the cruising speed, and the range of the airplane at any level of fuel will all be lower than shown in the Performance section

Section X Safety Information

Reechcraft Single Engine (Piston)

10-24

Section X Safety Information

airplane. Each pilot, prior to flight, must be fully aware of the proper procedures for operation, and particularly disengagement, for the system as installed.

In addition to ensuring compliance with the autopilot manufacturer's maintenance requirements, all owners/ operators should thoroughly familiarize themselves with the operation, function and procedures described in the Airplane Flight Manual Supplements. Ensure a full understanding of the methods of engagement and disengagement of the autopilot and trim systems.

Compare the descriptions and procedures contained in the Supplements to the actual installation in the airplane to ensure that the supplement accurately describes your installation. Test that all buttons, switches and circuit breakers function as described in the Supplements. If they do not function as described, have the system repaired by a qualified service agency. If field service advice or assistance is necessary, contact Beech Aircraft Corporation, Customer Support Department.

As stated in all AFM Supplements for autopilot systems and trim systems installed on Beech airplanes, the preflight check must be conducted before every flight. The preflight check assures not only that the systems and all of their features are operating properly, but also that the pilot, before flight, is familiar with the proper means of engagement and disengagement of the autopilot and trim system.

Autopilot Airplane Flight Manual Supplements caution against trying to override the autopilot system during flight without disengaging the autopilot because the autopilot will continue to trim the airplane and oppose the pilot's actions. This could result in a severely out of trim condition. This is a basic feature of all autopilots with electric trim follow-up.

Beechcraft Single Engine (Piston)

Do not try to manually override the autopilot during flight.

IN CASE OF EMERGENCY, YOU CAN OVERPOWER THE AUTOPILOT TO CORRECT THE ATTITUDE, BUT THE AUTOPILOT AND ELECTRIC TRIM MUST THEN IMMEDIATELY BE DISENGAGED.

It is often difficult to distinguish an autopilot malfunction from an electric trim system malfunction. The safest course is to deactivate both. Do not re-engage either system until after you have safely landed. Then have the systems checked by a qualified service facility prior to further flight.

Depending upon the installation on your airplane, the following additional methods may be available to disengage the autopilot or electric trim in the event that the autopilot or electric trim does not disengage utilizing the disengage methods specified in the Supplements.

Transient control forces may occur when the autopilot is disengaged.

- 1. Turn off the autopilot master switch, if installed.
- 2. Pull the autopilot and trim circuit breaker(s) or turn off the autopilot switch breaker, if installed.
- Turn off the RADIO MASTER SWITCH, if installed, and if the autopilot system and the trim system are wired through this switch.

Section X Safety Information

Radios, including VHF COMM are also disconnected when the radio master switch is off.

4. Turn off the ELECTRIC MASTER SWITCH.

WARNING

Almost all electrically powered systems will be inoperative. Consult the AFM for further information.

- 5. Push the GA switch on throttle grip, if installed, depending upon the autopilot system.
- Push TEST EACH FLT switch on the autopilot controller, if installed.

NOTE

After the autopilot is positively disengaged, it may be necessary to restore other electrical functions. Be sure when the master switches are turned on that the autopilot does not re-engage.

The above ways may or may not be available on your autopilot. It is essential that you read your airplane's AFM SUPPLEMENT for your autopilot system and check such function and operation on your system.

The engagement of the autopilot must be done in accordance with the instructions and procedures contained in the AFM SUPPLEMENT.

Beechcraft Single Engine (Piston)

Particular attention must be paid to the autopilot settings prior to engagement. If you attempt to engage the autopilot when the airplane is out of trim, a large attitude change may occur.

IT IS ESSENTIAL THAT THE PROCEDURES SET FORTH IN THE APPROVED AFM SUPPLEMENTS FOR YOUR SPECIFIC INSTALLATION BE FOLLOWED BEFORE ENGAGING THE AUTOPILOT.

TURBULENT WEATHER

A complete and current weather briefing is a requirement for a safe trip.

Updating of weather information en route is also essential. The wise pilot knows that weather conditions can change quickly, and treats weather forecasting as professional advice, rather than an absolute fact. He obtains all the advice he can, but stays alert to any sign or report of changing conditions.

Plan the flight to avoid areas of reported severe turbulence. It is not always possible to detect individual storm areas or find the in-between clear areas.

The National Weather Service classifies turbulence as follows:

Class of Turbulence	Effect	\frown
Extreme	Aircraft is violently tossed about and is practically impossible to control. May cause structural damage.	
Severe	Aircraft may be momentarily out of control. Occupants are thrown violently against the belts and back into the seat.	0

Section X Safety Information

Unsecured objects are tossed about.

Moderate

Occupants require seat belts and occasionally are thrown against the belt. Unsecured objects move about.

Light

Occupants may be required to use seat belts, but objects in the aircraft remain at rest.

Thunderstorms, squall lines and violent turbulence should be regarded as extremely dangerous and must be avoided. Hail and tornadic wind velocities can be encountered in thunderstorms that can destroy any airplane, just as tornadoes destroy nearly everything in their path on the ground.

Thunderstorms also pose the possibility of a lightning strike on an aircraft. Any structure or equipment which shows evidence of a lightning strike, or of being subjected to a high current flow due to a strike, or is a suspected part of a lightning strike path through the aircraft should be thoroughly inspected and any damage repaired prior to additional flight.

A roll cloud ahead of a squall line or thunderstorm is visible evidence of extreme turbulence; however, the absence of a roll cloud should not be interpreted as denoting that severe turbulence is not present.

Even though flight in severe turbulence must be avoided, flight in turbulent air may be encountered unexpectedly under certain conditions.

The following recommendations should be observed for airplane operation in turbulent air:

Flying through turbulent air presents two basic problems, the answer to both of which is proper airspeed. On one

Beechcraft Single Engine (Piston)

hand, if you maintain an excessive airspeed, you run the risk of structural damage or failure; on the other hand, if your airspeed is too low, you may stall.

If turbulence is encountered, reduce speed to the turbulent air penetration speed, if given, or to the maneuvering speed, which is listed in the Limitations section of the Pilot's Operating Handbook and FAA Approved Airplane Flight Manual. These speeds give the best assurance of avoiding excessive stress loads, and at the same time providing the proper margin against inadvertent stalls due to gusts.

Beware of overcontrolling in an attempt to correct for changes in attitude; applying control pressure abruptly will build up G-forces rapidly and could cause structural damage or even failure. You should watch particularly your angle of bank, making turns as wide and shallow as possible. Be equally cautious in applying forward or back pressure to keep the airplane level. Maintain straight and level attitude in either up or down drafts. Use trim sparingly to avoid being grossly out of trim as the vertical air columns change velocity and direction. If necessary to avoid excessive airspeeds, lower the landing gear.

WIND SHEAR

Wind shears are rapid, localized changes in wind direction, which can occur vertically as well as horizontally. Wind shear can be very dangerous to all aircraft, large and small, particularly on approach to landing when airspeeds are slow.

A horizontal wind shear is a sudden change in wind direction or speed that can, for example, transform a headwind into a tailwind, producing a sudden decrease in indicated airspeed because of the inertia of the aircraft. A vertical wind shear, is a sudden updraft or downdraft.

Section X Safety Information

Microbursts are intense, highly localized severe downdrafts.

The prediction of wind shears is far from an exact science. Monitor your airspeed carefully when flying near storms, particularly on approach. Be mentally prepared to add power and go around at the first indication that a wind shear is being encountered.

WEATHER RADAR

Airborne weather avoidance radar is, as its name implies, for avoiding severe weather--not for penetrating it. Whether to fly into an area of radar echoes depends on echo intensity, spacing between the echoes, and the capabilities of you and your aircraft. Remember that weather radar detects only precipitation drops; it does not detect turbulence. Therefore, the radar scope provides no assurance of avoiding turbulence. The radar scope also does not provide assurance of avoiding instrument weather due to clouds and fog. Your scope may be clear between intense echoes; this clear area does not necessarily mean you can fly between the storms and maintain visual sighting of them.

Thunderstorms build and dissipate rapidly. Therefore, do not attempt to plan a course between echoes using ground based radar. The best use of ground radar information is to isolate general areas and coverage of echoes. You must avoid individual storms from in-flight observations either by visual sighting or by airborne radar. It is better to avoid the whole thunderstorm area than to detour around individual storms unless they are scattered.

Remember that while hail always gives a radar echo, it may fall several miles from the nearest visible cloud and hazardous turbulence may extend to as much as 20 miles

Beechcraft Single Engine (Piston)

from the echo edge. Avoid intense or extreme level echoes by at least 20 miles; that is, such echoes should be separated by at least 40 miles before you fly between them. With weaker echoes you can reduce the distance by which you avoid them.

Above all, remember this: never regard any thunderstorm lightly. Even when radar observers report the echoes are of light intensity, avoiding thunderstorms is the best policy. The following are some do's and don'ts of thunderstorm avoidance:

- 1. Don't land or take off in the face of an approaching thunderstorm. A sudden gust front of low level turbulence could cause loss of control.
- Don't attempt to fly under a thunderstorm even if you can see through to the other side. Turbulence and wind shear under the storm could be disastrous.
- Don't fly without airborne radar into a cloud mass containing scattered embedded thunderstorms. Embedded thunderstorms usually can not be visually circumnavigated.
- 4. Don't trust visual appearance to be a reliable indicator of the turbulence inside a thunderstorm.
- Do avoid by at least 20 miles any thunderstorm identified as severe or giving an intense radar echo. This is especially true under the anvil of a large cumulonimbus.
- Do circumnavigate the entire area if the area has 6/10 or greater thunderstorm coverage.
- 7. Do remember that vivid and frequent lightning indicates the probability of a severe thunderstorm.
- Do regard as extremely hazardous any thunderstorm with tops 35,000 feet or higher, whether the top is visually sighted or determined by radar.

10-32

If you cannot avoid penetrating a thunderstorm, the following are some do's BEFORE entering the storm:

- Tighten your safety belt, put on your shoulder 9. harness, and secure all loose objects.
- Plan and hold your course to take you through the 10 storm in minimum time.
- To avoid the most critical icing, establish a 11. penetration altitude below the freezing level or above the level of -15°C.
- Verify that pitot heat is on and turn on carburetor 12. heat or engine anti-ice. Icing can be rapid at any altitude and cause almost instantaneous power failure and/or loss of airspeed indication.

MOUNTAIN FLYING

Pilots flying in mountainous areas should inform themselves of all aspects of mountain flying, including the effects of topographic features on weather conditions. Many good articles have been published, and a synopsis of mountain flying operations is included in the FAA Airman's Information Manual, Part 1.

Avoid flight at low altitudes over mountainous terrain, particularly near the lee slopes. If the wind velocity near the level of the ridge is in excess of 25 knots and approximately perpendicular to the ridge, mountain wave conditions are likely over and near the lee slopes. If the wind velocity at the level of the ridge exceeds 50 knots, a strong mountain wave is probable with extreme up and down drafts and severe turbulence. The worst turbulence will be encountered in and below the rotor zone, which is usually 8 to 10 miles downwind from the ridge. This zone is sometimes characterized by the presence of "roll clouds" if sufficient moisture is present; altocumulus standing lenticular clouds are also visible signs that a mountain wave exists, but their presence is likewise

Beechcraft Single Engine (Piston)

dependent on moisture. Mountain wave turbulence can, of course, occur in dry air and the absence of such clouds should not be taken as assurance that mountain wave turbulence will not be encountered. A mountain wave downdraft may exceed the climb capability of your airplane. Avoid mountain wave downdrafts.

VFR - LOW CEILINGS

If you are not instrument rated, do not attempt "VFR on Top" or "Special VFR" flight or clearances. Being caught above a solid cloud layer when an emergency descent is required (or at destination) is an extremely hazardous position for the VFR pilot. Accepting a clearance out of airport control zones with no minimum ceiling and onemile visibility as permitted with "Special VFR" is a foolish practice for the VFR pilot.

Avoid areas of low ceilings and restricted visibility unless you are instrument rated and proficient and have an instrument equipped airplane. Then proceed with caution and with planned alternates.

VFR AT NIGHT

When flying VFR at night, in addition to the altitude appropriate for the direction of flight, pilots should maintain a safe minimum altitude as dictated by terrain, obstacles such as TV towers, or communities in the area flown. This is especially true in mountainous terrain, where there is usually very little ground reference. Minimum clearance is 2,000 feet above the highest obstacle en route. Do not depend on your ability to see obstacles in time to miss them. Flight on dark nights over sparsely populated country can be the same as IFR, and must be avoided by inexperienced or non-IFR rated pilots.

Section X Safety Information

VERTIGO - DISORIENTATION

Disorientation can occur in a variety of ways. During flight, inner ear balancing mechanisms are subjected to varied forces not normally experienced on the ground. This, combined with loss of outside visual reference, can cause vertigo. False interpretations (illusions) result, and may confuse the pilot's conception of the altitude and position of his airplane.

Under VFR conditions, the visual sense, using the horizon as a reference, can override the illusions. Under low visibility conditions (night, fog, clouds, haze, etc.) the illusions predominate. Only through awareness of these illusions, and proficiency in instrument flight procedures, can an airplane be operated safely in a low visibility environment.

Flying in fog, dense haze or dust, cloud banks, or very low visibility, with strobe lights or rotating beacons turned on can contribute to vertigo. They should be turned off in these conditions, particularly at night.

All pilot's should check the weather and use good judgment in planning flights. The VFR pilot should use extra caution in avoiding low visibility conditions.

Motion sickness often precedes or accompanies disorientation and may further jeopardize the flight.

Disorientation in low visibility conditions is not limited to VFR pilots. Although IFR pilots are trained to look at their instruments to gain an artificial visual reference as a replacement for the loss of a visual horizon, they do not always do so. This can happen when the pilot's physical condition will not permit him to concentrate on his instruments; when the pilot is not proficient in flying instrument conditions in the airplane he is flying; or, when the pilot's work load of flying by reference to his

Beechcraft Single Engine (Piston)

instruments is augmented by such factors as turbulence. Even an instrument rated pilot encountering instrument conditions, intentional or unintentional, should ask himself whether or not he is sufficiently alert and proficient in the airplane he is flying, to fly under low visibility conditions and the turbulence anticipated or encountered.

If any doubt exists, the flight should not be made or it should be discontinued as soon as possible.

The result of vertigo is loss of control of the airplane. If the loss of control is sustained, it will result in an excessive speed accident. Excessive speed accidents occur in one of two manners, either as an inflight airframe separation or as a high speed ground impact; and they are fatal accidents in either case. All airplanes are subject to this form of accident.

For years, Beech Pilot's Operating Handbooks and FAA Approved Flight Manuals have contained instructions that the landing gear should be extended in any circumstance in which the pilot encounters IFR conditions which approach the limits of his capability or his ratings. Lowering the gear in IFR conditions or flight into heavy or severe turbulence, tends to stabilize the aircraft, assists in maintaining proper airspeed, and will substantially reduce the possibility of reaching excessive airspeeds with catastrophic consequences, even where loss of control is experienced.

Excessive speed accidents occur at airspeeds greatly in excess of two operating limitations which are specified in the manuals: Maximum maneuvering speed and the "red line" or "never exceed" speed. Such speed limits are set to protect the structure of an airplane. For example, flight controls are designed to be used to their fullest extent only below the airplane's maximum maneuvering speed. As a result, the control surfaces should never be

suddenly or fully deflected above maximum maneuvering speed. Turbulence penetration should not be performed above that speed. The accidents we are discussing here occur at airspeeds greatly in excess of these limitations. No airplane should ever be flown beyond its FAA approved operating limitations.

STALLS, SLOW FLIGHT AND TRAINING

The stall warning system must be kept operational at all times and must not be deactivated by interruption of circuits, circuit breakers, or fuses. Compliance with this requirement is especially important in all high performance single engine airplanes during simulated engine-out practice or stall demonstrations, because the stall speed is critical in all low-speed operation of airplanes.

Training should be accomplished under the supervision of a qualified instructor-pilot, with careful reference to the applicable sections of the FAA Practical Test Standards and FAA Pilot Transition Courses for Complex Single Engine and Light Twin Engine Airplanes (AC61-9). In particular, observe carefully the warnings in the Practical Test Standards.

SPINS

A major cause of fatal accidents in general aviation aircraft is a spin. Stall demonstrations and practice are a means for a pilot to acquire the skills to recognize when a stall is about to occur and to recover as soon as the first signs of a stall are evident. <u>If a stall does not occur</u> - A spin cannot occur.

It is important to remember however, that a stall can occur in any flight attitude, at any airspeed, if controls are misused.

Section X Safety Information

Unless your aircraft has been specifically certificated in the aerobatic category and specifically tested for spin recovery characteristics, it is placarded against intentional spins.

The pilot of an airplane placarded against intentional spins should assume that the airplane may become uncontrollable in a spin, since its performance characteristics beyond certain limits specified in the FAA regulations may not have been tested and are unknown. This is why aircraft are placarded against intentional spins, and this is why stall avoidance is your protection against an inadvertent spin.

Pilots are taught that intentional spins are entered by deliberately inducing a yawing moment with the controls as the aircraft is stalled. Inadvertent spins result from the same combination - stall plus yaw. That is why it is important to use coordinated controls and to recover at the first indication of a stall when practicing stalls.

Always remember that extra alertness and pilot techniques are required for slow flight maneuvers, including the practice or demonstration of stalls. In addition to the foregoing mandatory procedure, always:

Be certain that the center of gravity of the airplane is as far forward as possible. Forward C.G. aids stall recovery, spin avoidance and spin recovery. An aft C.G. can create a tendency for a spin to stabilize, which delays recovery.

Whenever a student pilot will be required to practice slow flight, be certain that the qualified instructor pilot has a full set of operable controls available. FAA regulations prohibit flight instruction without full dual controls.

Conduct any maneuvers which could possibly result in a spin at altitudes in excess of five thousand (5,000) feet above ground level in clear air only.

Section X Safety Information

Remember that an airplane, at or near traffic pattern and approach altitudes, cannot recover from a spin, or perhaps even a stall, before impact with the ground. On final approach maintain at least the airspeed shown in the flight manual.

Remember that if an airplane flown under instrument conditions is permitted to stall or enter a spin, the pilot, without reference to the horizon, is certain to become disoriented. He may be unable to recognize a stall, spin entry, or the spin condition and he may be unable to determine even the direction of the rotation.

Finally, never forget that stall avoidance is your best protection against an inadvertent spin. MAINTAIN YOUR AIRSPEED.

In aircraft not certificated for aerobatics spins are prohibited. If a spin is entered inadvertently:

Immediately move the control column full forward and simultaneously apply full rudder opposite to the direction of the spin; continue to hold this position until rotation stops and then neutralize all controls and execute a smooth pullout. Ailerons should be neutral and the throttle in idle position at all Itimes during recovery.

DESCENT

In single engine piston-powered airplanes, supercharged or normally aspirated, it is necessary to avoid prolonged descents with low power, as this produces two problems: (1) excessively cool cylinder head temperatures which cause premature engine wear, and (2) excessively rich mixtures due to idle enrichment (and altitude) which causes soot and lead deposits on the spark plugs (fouling). The second of these is the more serious consideration; the engine may not respond to the throttle

Beechcraft Single Engine (Piston)

when it is desired to discontinue the descent. Both problems are amenable to one solution: maintain adequate power to keep cylinder head temperature in the "green" range during descent, and lean to best power mixture (that is, progressively enrich the mixture from cruise only slightly as altitude decreases). This procedure will lengthen the descent, of course, and requires some advance planning. If it is necessary to make a prolonged descent at or near idle, as in practicing forced landings, at least avoid the problem of fouled spark plugs by frequently advancing the throttle until the engine runs smoothly, and maintain an appropriate mixture setting with altitude. (Refer to pre-landing check list.)

VORTICES - WAKE TURBULENCE

Every airplane generates wakes of turbulence while in flight. Part of this is from the propeller or jet engine, and part from the wing tip vortices. The larger and heavier the airplane, the more pronounced and turbulent the wakes will be. Wing tip vortices from large, heavy airplanes are very severe at close range, degenerating with time, wind and distance. These are rolling in nature, from each wing tip. In tests, vortex velocities of 133 knots have been recorded. Encountering the rolling effect of wing tip vortices within two minutes after passage of large airplanes is most hazardous to light airplanes. This roll effect can exceed the maximum counter-roll obtainable in a light airplane. The turbulent areas may remain for as long as three minutes or more, depending on wind conditions, and may extend several miles behind the airplane. Plan to fly slightly above and to the windward side of the other airplanes. Because of the wide variety of conditions that can be encountered, there is no set rule to follow to avoid wake turbulence in all situations. However, the Airman's Information Manual, and to a greater extent Advisory Circular 90-23, Aircraft Wake

Section X Safety Information

Turbulence, provide a thorough discussion of the factors you should be aware of when wake turbulence may be encountered.

TAKEOFF AND LANDING CONDITIONS

When taking off on runways covered with water or freezing slush, the landing gear should remain extended for approximately ten seconds longer than normal, allowing the wheels to spin and dissipate the freezing moisture. The landing gear should then be cycled up, then down, wait approximately five seconds and then retracted again. Caution must be exercised to insure that the entire operation is performed below Maximum Landing Gear Operating Airspeed.

Use caution when landing on runways that are covered by water or slush which cause hydroplaning (aquaplaning), a phenomenon that renders braking and steering ineffective because of the lack of sufficient surface friction. Snow and ice covered runways are also hazardous. The pilot should also be alert to the possibility of the brakes freezing.

Use caution when taking off or landing during gusty wind conditions. Also be aware of the special wind conditions caused by buildings or other obstructions located near the runway.

MEDICAL FACTS FOR PILOTS

GENERAL

When the pilot enters the airplane, he becomes an integral part of the man-machine system. He is just as essential to a successful flight as the control surfaces. To ignore the pilot in preflight planning would be as
Section X Safety Information

Beechcraft Single Engine (Piston)

senseless as failing to inspect the integrity of the control surfaces or any other vital part of the machine. The pilot has the responsibility for determining his reliability prior to entering the airplane for flight. When piloting an airplane, an individual should be free of conditions which are harmful to alertness, ability to make correct decisions, and rapid reaction time.

FATIGUE

Fatigue generally slows reaction time and causes errors due to inattention. In addition to the most common cause of fatigue; insufficient rest and loss of sleep, the pressures of business, financial worries, and family problems can be important contributing factors. If you are tired, don't fly.

HYPOXIA

Hypoxia, in simple terms, is a lack of sufficient oxygen to keep the brain and other body tissues functioning properly. There is a wide individual variation in susceptibility to hypoxia. In addition to progressively insufficient oxygen at higher altitudes, anything interfering with the blood's ability to carry oxygen can contribute to hypoxia (anemias, carbon monoxide, and certain drugs). Also, alcohol and various drugs decrease the brain's tolerance to hypoxia.

Your body has no built-in alarm system to let you know when you are not getting enough oxygen. It is impossible to predict when or where hypoxia will occur during a given flight, or how it will manifest itself. Some of the common symptoms of hypoxia are increased breathing rate, a light-headed or dizzy sensation, tingling or warm sensation, sweating, reduced visual field, sleepiness, blue coloring of skin, fingernails, and lips, and behavior

Beechcraft Single Engine (Piston)

Section X Safety Information

changes. A particularly dangerous feature of hypoxia is an increased sense of well-being, called euphoria. It obscures a person's ability and desire to be critical of himself, slows reaction time, and impairs thinking ability. Consequently, an hypoxic individual commonly believes things are getting progressively better while he nears total collapse.

The symptoms are slow but progressive, insidious in onset, and are most marked at altitudes starting above ten thousand feet. Night vision, however, can be impaired starting at an altitude of 5,000 feet. Persons who have recently overindulged in alcohol, who are moderate to heavy smokers, or who take certain drugs, may be more susceptible to hypoxia. Susceptibility may also vary in the same individual from day to day or even morning to evening. Use oxygen on flights above 10,000 feet and at any time when symptoms appear.

Depending upon altitude, an hypoxic individual has a limited time to make decisions and perform useful acts, even though he may remain conscious for a longer period. The time of useful consciousness is approximately 3-5 minutes at 25,000 feet of altitude and diminishes markedly as altitude increases.

Pilots who fly to altitudes that require or may require the use of supplemental oxygen should be thoroughly familiar with the operation of the aircraft oxygen systems. A preflight inspection of the system should be performed, including proper fit of the mask. The passengers should be briefed on the proper use of their oxygen system before flight.

Section X Safety Information

Beechcraft Single Engine (Piston)

Pilots who wear beards should be careful to ensure that their beard is carefully trimmed so that it will not interfere with proper sealing of the oxygen masks. If you wear a beard or moustache, test the fit of your oxygen mask on the ground for proper sealing. Studies conducted by the military and oxygen equipment manufacturers conclude that oxygen masks do not seal over beards or heavy facial hair.

Federal Aviation Regulations related to the use of supplemental oxygen by flight crew and passengers must be adhered to if flight to higher altitudes is to be accomplished safely. Passengers with significant circulatory or lung disease may need to use supplemental oxygen at lower altitudes than specified by these regulations.

HYPERVENTILATION

Hyperventilation, or overbreathing, is a disturbance of respiration that may occur in individuals as a result of emotional tension or anxiety. Under conditions of emotional stress, fright, or pain, breathing rate may increase, causing increased lung ventilation, although the carbon dioxide output of the body cells does not increase. As a result, carbon dioxide is "washed out" of blood. The most common symptoms of the hyperventilation are: dizziness, nausea, sleepiness, and finally, unconsciousness. If the symptoms persist discontinue use of oxygen and consciously slow your breathing rate until symptoms clear, and then resume normal breathing rate. Normal breathing can be aided by talking aloud.

Beechcraft Single Engine (Piston)

ALCOHOL

Common sense and scientific evidence dictate that you must not fly as a crew member while under the influence of alcohol. Alcohol, even in small amounts, produces, among other things, a dulling of critical judgment; a decreased sense of responsibility; diminished skill reactions and coordination; decreased speed and strength of muscular reflexes (even after one ounce of alcohol); decreases in efficiency of eve movements during reading (after one ounce of alcohol); increased frequency of errors (after one ounce of alcohol); constriction of visual fields; decreased ability to see under dim illuminations; loss of efficiency of sense of touch: decrease of memory and reasoning ability; increased susceptibility to fatigue and decreased attention span; decreased relevance of response; increased self confidence with increased insight into immediate capabilities.

Tests have shown that pilots commit major errors of judgment and procedure at blood alcohol levels substantially less than the minimum legal levels of intoxication for most states. These tests further show a continuation of impairment from alcohol up to as many as 14 hours after consumption, with no appreciable diminution of impairment. The body metabolizes ingested alcohol at a rate of about one-third of an ounce per hour. Even after the body completely destroys a moderate amount of alcohol, a pilot can still be severely impaired for many hours by hangover. The effects of alcohol at 18,000 feet produce the same adverse effects as 6 oz. at sea level.

Federal Aviation Regulations have been amended to reflect the FAA's growing concern with the effects of alcohol impairment. FAR 91 states:

Beechcraft Single Engine (Piston)

Section X Safety Information

"(a) No person may act or attempt to act as a crewmember of a civil aircraft:

- Within 8 hours after the consumption of any alcoholic beverage;
- 2. While under the influence of alcohol;
- 3. While using any drug that affects the person's faculties in any way contrary to safety; or
- 4. While having .04 percent by weight or more alcohol in the blood.

(b) Except in an emergency, no pilot of a civil aircraft may allow a person who appears to be intoxicated or who demonstrates by manner or physical indications that the individual is under the influence of drugs (except a medical patient under proper care) to be carried in that aircraft."

Because of the slow destruction of alcohol by the body, a pilot may still be under influence eight hours after drinking a moderate amount of alcohol. Therefore, an excellent rule is to allow at least 12 to 24 hours between "bottle and throttle," depending on the amount of alcoholic beverage consumed.

DRUGS

Self-medication or taking medicine in any form when you are flying can be extremely hazardous. Even simple home or over-the-counter remedies and drugs such as aspirin, antihistamines, cold tablets, cough mixtures, laxatives, tranquilizers, and appetite suppressors, may seriously impair the judgment and coordination needed while flying. The safest rule is to take no medicine before or while flying, except after consultation with your Aviation Medical Examiner.

Reechcraft Single Engine (Piston)

SCUBA DIVING

Flying shortly after any prolonged scuba diving could be dangerous. Under the increased pressure of the water. excess nitrogen is absorbed into your system. If sufficient time has not elapsed prior to takeoff for your system to rid itself of this excess gas, you may experience the bends at altitudes even under 10,000 feet, where most light planes fly.

CARBON MONOXIDE AND NIGHT VISION

The presence of carbon monoxide results in hypoxia which will affect night vision in the same manner and extent as hypoxia from high altitudes. Even small levels of carbon monoxide have the same effect as an altitude increase of 8,000 to 10,000 feet. Smoking several cigarettes can result in a carbon monoxide saturation sufficient to affect visual sensitivity equal to an increase of 8,000 feet altitude.

A FINAL WORD

Airplanes are truly remarkable machines. They enable us to shrink distance and time, and to expand our business and personal horizons in ways that, not too many years ago, were virtually inconceivable. For many businesses, the general aviation airplane has become the indispensable tool of efficiency.

Advances in the mechanical reliability of the airplane we fly have been equally impressive, as attested by the steadily declining statistics of accidents attributed to mechanical causes, at a time when the airframe, systems and power plants have grown infinitely more complex. The explosion in capability of avionics systems is even

Section X Safety Information

Beechcraft Single Engine (Piston)

more remarkable. Radar, RNAV, LORAN, sophisticated autopilots and other devices which, just a few years ago, were too large and prohibitively expensive for general aviation size airplanes, are becoming increasingly commonplace in even the smallest airplanes.

It is thus that this Safety Information is directed to the pilot, for it is in the area of the skill and proficiency of you, the pilot, that the greatest gains in safe flying are to be made over the years to come. Intimate knowledge of your aircraft, its capabilities and its limitations, and disciplined adherence to the procedures for your aircraft's operation, will enable you to transform potential tragedy into an interesting hangar story when - as it inevitably will - the abnormal situation is presented.

Know your aircraft's limitations, and your own. Never exceed either.

Safe flying,

.....BEECH AIRCRAFT CORPORATION